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• 3D nanostructure enables uniform 
membrane-hotspot interfacing for sen
sitive detection.

• Wafer-scale platform allows high- 
throughput, rapid SERS mapping of 
living cells.

• Large, reproducible spectral datasets 
enable robust multi-class subtype 
classification.

• PCA-LDA analysis achieves 92.5 % ac
curacy in classifying breast cancer 
subtypes.
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A B S T R A C T

Surface-enhanced Raman spectroscopy (SERS) is a non-destructive and highly sensitive technique widely used 
for analyzing complex biological samples. However, conventional SERS approaches for living cell analysis face 
significant challenges. In particular, nanoparticle-based intracellular probes can induce cytotoxicity, and at
tempts to use 3D protruding nanostructures to interrogate cells externally have shown limited success so far. 
Furthermore, existing cell-interfacing SERS substrates typically capture only a small fraction of cellular bio
molecular signals, producing sparse data that often limits classification tasks to simple binary outcomes. To 
address these limitations, we developed a 3D multilayer nanolaminate SERS substrate composed of gold and 
silica (Au/SiO₂) that interfaces directly with the cell membrane. Using this platform, we achieved high-speed, 
high-throughput, label-free SERS mapping of living breast cancer cells, obtaining large and information-rich 
spectral datasets. In contrast to prior methods, our approach enabled the classification of four breast cancer 
subtypes with 92.5 % accuracy using conventional machine learning algorithms. This label-free SERS platform 
demonstrates potential for more complex cellular analyses via advanced machine learning, including studies of 
cellular responses to external stimuli such as drug treatments.
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1. Introduction

Surface-enhanced Raman spectroscopy (SERS) has emerged as an 
ultrasensitive detection technique, significantly amplifying chemical- 
specific vibrational fingerprints through plasmonic hotspots [1]. The 
strong electromagnetic (EM) coupling between the surface plasmon- 
mediated local EM field and the inelastic Raman scattering of mole
cules in the plasmonic hotspots enables SERS sensitivity to reach single- 
molecule detection [2]. Such ultrahigh sensitivity allows label-free 
sensing of the intrinsic chemical signatures of analyte molecules in 
various samples without complex pre-treatment or pre-processing. 
Additionally, as an optical sensing technique, SERS is non-destructive, 
and its narrow peak bandwidth offers powerful multiplexing capa
bility for analyzing complex matrices. Due to these prominent features, 
SERS has been extensively utilized for diverse biological samples, 
including DNA, RNA, biomolecules, extracellular vesicles, and biofluids, 
as well as in vitro, ex vivo, and in vivo models [3–9].

For cellular SERS applications, numerous studies on living cells have 
been reported to investigate cellular mechanisms involving proteins, 
lipids, and DNA [10]. SERS bio-analysis of living cells enables molecular 
profiling of cellular components with minimum disruption to the cell’s 
natural status, providing enhanced biological reliability compared to 
dead or fixed cells. To probe the intracellular structure and dynamics of 
living cells, bottom-up-based plasmonic anoparticles utilizing endocy
tosis have been employed [11–14]. Plasmonic nanoparticles internal
ized into cells by endocytosis can serve as nanoantennas by directly 
delivering enhanced Raman spectroscopic signatures of biological 
molecules and structures of intracellular environments. However, 
challenges remain as the use of nanoparticles can lead to toxicity, and 
their eventual localization within lysosomes precludes the investigation 
of various intracellular mechanisms [10,15]. One interesting approach 
to mitigate the limited localization of nanoparticles involves label-based 
techniques with spatially and spectrally selective Raman reporters 
functionalized onto nanoparticle surfaces [16–20]. However, these 
methods still require complex chemical processes and target pre- 
knowledge.

It has been reported that membrane engulfment over 3D protruding 
nanostructures provides a more consistent nano-bio interface compared 
to 2D planar substrates with random adhesion points [21–23]. For 
example, nanoelectrodes with 3D vertical nanotopography showed a 
significantly enhanced signal-to-noise ratio in electrophysiological ap
plications. The underlying biological mechanism involves topography- 
induced membrane curvature, which serves as a biochemical signal to 
initiate actin reorganization within cells through the curvature-sensitive 
protein FBP17 [24]. Considering the extremely sensitive distance 
dependence of SERS intensity (I ∝ r− 12) [25,26], the nanotopography- 
induced tight nano-bio interface can provide a consistent membrane- 
hotspot interface for cellular SERS studies and few top-down-based 3D 
vertical nanoantennas have been reported as an alternative to colloidal 
nanoparticles [27–31]. However, realizing a suitable 3D vertical SERS 
substrate for label-free living cell analysis has still been challenging due 
to the poor sensitivity based on low hotspot density and small device 
footprint that precludes investigation of the cellular network.

Therefore, the amount of biomolecular fingerprint data acquired 
from previous cell-interfaced SERS substrates has generally been limited 
to tens of spectra, leading to a binary classification of intrinsically 
different sample groups, for instance, live versus dead cells, normal 
versus cancer cells, or cancer cells from different organs [6,32,33]. In 
order for SERS to play a more significant role in biomedical applications, 
multiple sample classifications, such as cell subtypes or cells with 
different external stimuli conditions, need to be achieved. For example, 
different types of cancer cells from the same organ exhibit significantly 
different clinical prognoses; therefore, precise and rapid diagnosis of the 
subtype is critically essential for patients. However, SERS-based multi- 
class classification for similar cell groups with subtle biological differ
ences remains challenging due to the difficulty in acquiring a large and 

reliable SERS dataset. To establish a reliable label-free cell-interfaced 
SERS platform, crucial factors should be ensured, including high- 
performance SERS substrates with a large device footprint and a 
consistent interface with cell membranes.

In this work, we present a label-free approach for classifying living 
breast cancer subtypes enabled by membrane-interfacing 3D vertical 
SERS substrates. We performed label-free high-throughput SERS map
ping for four types of normal and cancerous living breast cells, including 
MCF-10A, MCF-7, HCC-1806, and MDA-MB-231, and achieved a multi- 
class classification accuracy of 92.5 %. A vertically stacked metal- 
insulator-metal (MIM) structure-based SERS substrate with uniform 
and highly sensitive hotspots, named nanolaminate, exhibits a broad 
plasmonic resonance that spectrally covers the biological Raman win
dow. The 3D protruding nanotopography of MIM building blocks in
duces cell engulfment, facilitating a tight membrane-hotspot interface. 
Such a nano-bio interface allows a highly sensitive hotspot for directly 
acquiring extracellular signals from living cells.

2. Experimental sections

2.1. Fabrication of 3D nanostructure SERS substrate

First, we made a composite polydimethylsiloxane (PDMS) stamp of 
nanowell arrays with a period of 400 nm, a diameter of 100 nm, and a 
height of 150 nm from a silicon wafer patterned with nanopillar struc
tures by soft lithography. By molding with the PDMS stamp, we used UV- 
curable polyurethane (PU) (NOA83H, Norland Product Inc.) to fabricate 
nanopillar arrays on a flexible and optically transparent polyester film. 
After 10 min UV curing, we performed an additional heat-curing process 
at 80 ◦C in a convection oven overnight. Next, alternating layers of gold 
and SiO2 were deposited by electron-beam deposition (PVD250, Kurt J. 
Lesker Company). The thickness for four gold layers is 30 nm, and the 
thicknesses of three SiO2 layers are 6 nm, 8 nm, and 12 nm from bottom 
to top. We deposited 1 nm of chromium between the polymer nanopillar 
array and the first layer of gold, and 0.7 nm thick titanium between gold 
and insulator layers as adhesion layers. Buffered oxide etchant (BOE, 
10:1) (Transene Inc.) was then used to etch SiO2 layers for 20 s and 
expose embedded MIM plasmonic hotspots.

2.2. Finite-difference time domain (FDTD)

3D FDTD simulations were performed by commercial software 
(FDTD solution, Ansys Lumerical Inc., USA). A uniform 2 nm mesh was 
used for x-, y-, and z-directions. The optical constants of gold were taken 
from Johnson and Christy. The Bloch boundary condition was used in x- 
and y-directions with a periodicity of 400 nm and the perfectly matched 
layer boundary condition was used in the z-direction. The refractive 
indices of SiO2, PU, and background were set as 1.5, 1.56, and 1.33, 
respectively.

2.3. Cell culture

MDA-MB-231 (American Type Culture Collection, ATCC) was grown 
in F12:DMEM (Dulbecco’s Modified Eagle Medium, Lonza, Basel, 
Switzerland) with 4 mM glutamine, 10 % fetal bovine serum (FBS), and 
penicillin− streptomycin (100 units per mL). HCC-1806 (ATCC) was 
grown in an ATCC-formulated RPMI-1640 medium (Roswell Park Me
morial Institute 1640 medium, enriched with L-glutamine, 4-(2- 
hydroxyethyl)-1 piperazine ethanesulfonic acid (HEPES), and sodium 
pyruvate, ATCC 30–2001) with 10 % FBS and 1 % PenStrep (100 units/ 
mL penicillium and 100 μg/mL streptomycin). MCF-7 cells (ATCC) were 
grown in EMEM with 10 % FBS and 2× L glutamine. MCF-10A cells 
(Lombardi Comprehensive Cancer Center, Georgetown University in 
Washington, D.C.) were grown in F12:DMEM with pen
icillin− streptomycin (100 units/mL), 20 ng/mL epidermal growth fac
tor (EGF), 2.5 mM L-glutamine, 10 μg/mL insulin, 0.1 μg/mL cholera 
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toxin, 0.5 μg/mL hydrocortisone, and 5 % horse serum. All cells were 
grown in T-25 cm2 culture flasks (Corning, NY) at 37 ◦C in a 5 % CO2 in 
air atmosphere. Cells were then trypsinized and seeded on nanolaminate 
SERS substrates.

2.4. SEM for cells

SEM was performed using FEI Helios 600 Nanolab Dual-beam. 
Cultured cells were rinsed by PBS solution twice, followed by fixation 
with 2.5 % glutaraldehyde in PBS solution at room temperature for 1 h. 
Cells were then rinsed by PBS solution twice, followed by post-fixation 
with 1 % osmium tetroxide and dehydration in graded ethanol series 
from 15 % to 100 % (each condition was carried out for 15 min). A 
critical point dryer dried cells in liquid CO2. 5 nm of PtPd was sputtered 
as a conducting layer to reduce the charging in SEM measurements.

2.5. SERS measurement

We used a confocal Raman microscope (Alpha 300 RSA+, WITec, 
Germany) for SERS measurements under laser excitation at 785 nm 
(Toptica Photonics, Germany) via a 20× objective (NA = 0.4). For 2D 
Raman mapping of living cells, a 20× water immersion objective (NA =
0.5) was used with 5 mW laser power and 10 ms integration time per 
pixel over a 100 μm × 100 μm area. Before the measurement, the 
instrumental calibration was verified by the silicon peak at 520 cm− 1. 
All measurements were conducted in the backscattering geometric 
configuration at room temperature. A long-pass filter blocks elastically 
scattered radiation at the wavelength corresponding to the laser line 
(Rayleigh scattering). Simultaneously, the rest of the collected light was 
guided through a multimode fiber (100 μm core diameter), acting as the 
pinhole for a confocal microscope, to a spectrometer (UHTS 300, WITec, 
Germany). The backscatter photons were dispersed with a 300 groove 
mm− 1 (750 nm blaze grating) and detected by a CCD camera which was 
thermoelectrically cooled and maintained at − 60 ◦C.

2.6. Statistical analysis

Cosmic ray removal was conducted by instrument-embedded soft
ware (Project v4.1, WITec). Smoothing interpolation and data trunca
tion were carried out with the R package hyperSpec. Principal 
component analysis (PCA) and peak picking were done with the R 
packages ChemoSpec and MALDIquant, respectively. Linear discrimi
nant analysis (LDA) and leave-one-out cross-validation (LOOCV) were 
performed using the R package MASS.

3. Results and discussion

Fig. 1 depicts an overall flowchart illustrating the label-free cell- 
interfaced SERS platform for multi-class classification of four living 
breast cell subtypes. We fabricated nanolaminate SERS substrates, 
consisting of multilayered gold and silicon dioxide, that support uniform 
and dense 3D vertical hotspots with a high SERS EF value of 1.6 × 108 

[34]. The high SERS sensitivity is crucial as ultralow concentrations of 
biomolecules may significantly contribute to subtype classification. The 
3D protruding nanotopography of the nanolaminate structure can 
induce cell engulfment, allowing a tight membrane-hotspot interface 
and reliable label-free biomolecular sensing from living cells. As shown 
in Fig. 1 (middle), we confirmed the distinct morphology of living cancer 
cells cultured on the SERS substrate, reflecting their healthy status, and 
the scanning electron microscopy (SEM) image shows the membrane- 
hotspot interface. By leveraging the high SERS performance of a uni
form membrane-hotspot interface and a large device footprint (~16 
cm2), we performed high-throughput 2D SERS mapping for living cells 
over a large area (100 μm × 100 μm). Four different types of normal and 
cancerous cells were studied, and a total of 10,000 data points for each 
cell type were acquired and filtered, resulting in a high-quality large 
volume of SERS dataset (total n > 2000). To achieve a multi-class 
classification of living breast cancer subtypes, we employed a conven
tional multivariate analysis, principal component analysis (PCA) com
bined with linear discriminant analysis (LDA). PCA was used as a 
dimension reduction tool, and the processed principal components (PCs) 

Fig. 1. A schematic illustration for classifying four different types of living breast cells (normal and cancerous) using multivariate analysis. High-throughput SERS 
mapping using nanolaminate SERS substrates for a large-volume living cell dataset acquisition.
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were used as input into the LDA model for the classification of four 
different breast cell lines, including normal breast cell (MCF-10A), 
moderately malignant breast cancer cell (MCF-7), and two highly ma
lignant breast cancer cells (HCC-1806 and MDA-MB-231).

3.1. Fabrication of nanolaminate structures and optical properties

Fig. 2A shows an SEM image of the nanolaminate SERS substrate 
with a uniform MIM array. The diameter of the MIM building block is 
120 nm with a periodicity of 400 nm. To fabricate SERS substrates with 
MIM building block arrays, we employed soft lithography to create a 
nanowell composite hard-polydimethylsiloxane (PDMS) stamp [35]. 
These three dielectric layer thicknesses are designed based on plasmon 
resonance positions of the magnetic dipole modes to achieve broad 
resonance from the visible to near-infrared (NIR) range. The fabricated 
SERS substrate has a large device footprint of 16 cm2, providing a suf
ficient area for direct cell culture.

To investigate the optical properties of nanolaminate SERS substrate 
interfacing with living cells, we measured its reflectance spectrum with 
a water background. Additionally, to gain a deeper insight into the op
tical properties of the nanolaminate SERS substrate, we employed the 
finite-difference time-domain (FDTD) method to investigate far-field 
(reflectance) and near-field responses. The simulation background 
refractive index was set to 1.33 (water) to mimic the biological condi
tion. Fig. 2B shows the measured and calculated reflectance spectra from 
400 nm to 1300 nm. In the calculated spectrum, multiple resonant dips 
were observed at 590 nm, 728 nm, 752 nm, 850 nm, and 934 nm, each 
originating from different physical origins. These physical origins 
include delocalized plasmonic modes from the bottom MIM nanohole 
arrays, localized gap modes from the vertically stacked nanodisks, and 
their plasmonic hybridizations [33]. The near-field electric field profiles 
at these resonant dips are shown in Fig. S1. While the measured spec
trum shows a good agreement with the calculated reflectance dip posi
tions, it exhibits a broader dip profile. Such a broad plasmonic resonant 

feature arises from inhomogeneous broadening caused by geometric 
variations between individual nanostructures and homogeneous 
broadening resulting from increased metal losses associated with the 
interface roughness between metal and dielectric layers. The broadband 
resonant property extending from vis to NIR range is advantageous for 
label-free living cell SERS measurement under NIR excitation (785 nm), 
as it encompasses both the excitation laser and the biological window of 
the Stokes Raman scattering region.

The near-field optical properties of the MIM nanoantenna were 
analyzed at an excitation wavelength of 785 nm. Fig. 2C displays the 
electric field intensity map and the SiO2 nanogaps (GAP1, GAP2, and 
GAP3) at different z-positions. Strongly enhanced electric fields are 
observed at the nanogap region and sidewall (gap entrance), directly 
interacting with living cell membranes. In Fig. 2D, we calculated the 
electric field intensity of three nanogaps along the x-axis and confirmed 
that the field enhancements are mainly observed in the nanogap and gap 
entrance regions. At each nanogap GAP1, GAP2, and GAP3, the 
maximum values of the |E|2 are observed near the gap entrance, with 
values of 3.2 × 103, 2.4 × 103, and 1.1 × 103, respectively. Based on |E|4 

approximation [36], their corresponding estimated SERS EFs are 1.0 ×
107, 5.6 × 106, and 1.2 × 106, respectively.

3.2. High-throughput SERS data acquisition

Fig. 3A-D show bright-field images of normal breast cells and three 
different types of breast cancer cells directly cultured on SERS sub
strates. Fig. 3A shows the normal MCF-10A cells, Fig. 3B shows the 
moderately malignant MCF-7 breast cancer cells, and Fig. 3C and D 
show the two triple-negative breast cancer cells, HCC-1806 and MDA- 
MB-231. Triple-negative refers to a subtype of breast cancer in which 
the cancer cells lack expression of the estrogen receptor (ER), proges
terone receptor (PR), and human epidermal growth factor receptor 2 
(HER2). Triple-negative breast cancer (TNBC) cells have been reported 
not to respond to hormonal therapies or treatments targeting HER2, 

Fig. 2. SERS substrate characterization. (A) Top-view SEM image of the nanolaminate SERS substrate. (B) Measured and FDTD-calculated reflectance spectrum of the 
nanolaminate substrate. (C) FDTD-calculated x-z distribution map of |E|2 at 785 nm under a background refractive index of 1.33. (D) FDTD-calculated |E|2 as a 
function of x for the three MIM plasmonic nanogaps (GAP1, GAP2, and GAP3).
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making them more challenging to treat and considered a highly malig
nant cancer type.

MCF-10A cells exhibit a round or oval shape, characteristic of normal 
breast epithelial cells, and tend to form a monolayer due to cell-cell 
contact [37]. MCF-7 cells, in contrast, have a relatively polygonal 
shape with stronger cell-cell interactions compared to MCF-10A [38]. 
HCC-1806 cells display a distinct spindle shape and scattered distribu
tion, reflecting the characteristics of basal-like TNBC [39]. MDA-MB- 
231 cells, known for their more aggressive cancer behavior, have less 
cell-cell contact and exhibit a higher degree of atypical morphology 
[40]. The morphology of cells directly cultured on SERS substrates 
matches the reported morphological features well, indicating the 
healthy status of cells and the biocompatibility of gold-based nano
laminate SERS substrates.

To further investigate the membrane-hotspot interface, Fig. 3E pre
sents an SEM image of the MDA-MB-231 cell cultured on the SERS 
substrate. Cancerous cells differ from normal cells in terms of interaction 
with the extracellular matrix (i.e., SERS substrate), with the structural 
feature of a brush-like layer being a key consideration. The brush-like 
layer interacting with the substrate exhibits morphology and length 
consistent with previously reported findings [41]. Additionally, the SEM 
image reveals how cells adhere to the nanolaminate SERS substrate, 

with the brush-like layer appearing to grasp or wrap the 3D protruding 
nanotopography. Such adhesion of cells induced by the 3D nano
topography enables a tight membrane–hotspot interface, facilitating the 
direct acquisition of biomolecular fingerprints from the cellular mem
brane environment.

Fig. 3F demonstrates the high-throughput SERS measurement for 
living cells. We performed 2D mapping over a 100 μm × 100 μm region 
containing several living cells with a pixel size of 1 μm × 1 μm and an 
integration time of 10 ms. The high sensitivity of nanolaminate SERS 
substrates allows a short integration time and low laser power during 
measurement, minimizing sample damage from high laser power- 
induced and/or plasmon-mediated local heating. By rapidly scanning 
the entire area within 3–5 min, we can maximize the signal reliability of 
living cancer cells with minimum perturbations from dynamic cellular 
processes. For example, we experimentally observed active cell division 
after tens of minutes during bright-field imaging. Rapid mapping across 
nanolaminate SERS substrates ensures improved reliability in label-free 
living cell SERS measurements.

3.3. Biomolecular peak assignment

For 10,000 data points acquired from 2D SERS mapping, areas 

Fig. 3. High-throughput label-free SERS mapping for living cells. Bright-field images of cells: (A) MCF-10A, (B) MCF-7, (C) HCC-1806, and (D) MDA-MB-231. (E) 
SEM image of an MDA-MB-231 cell on the nanolaminate SERS substrate. (F) High-throughput 2D SERS mapping over a 100 μm × 100 μm region, with each pixel size 
of 1 μm × 1 μm, covering approximately five MIM buildings per laser spot.
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without cells and spectra with no peaks were discarded to focus on cell- 
specific SERS signals. We obtained 422, 538, 561, and 560 SERS spectra 
for MCF-10A, MCF-7, HCC-1806, and MDA-MB-231, respectively, and 
performed spectral smoothing to reduce noise. Fig. 4A-D show the 
average SERS spectra for each cell type, with data distribution ranging 
from the 5th to 95th percentile. For all cases, the absence of broad 
carbon-based D (1350 cm− 1) and G (1580 cm− 1) bands, which can 
possibly mask the observation of low-intensity SERS signals, confirms 
that the laser excitation did not generate photoinduced graphitization of 
organic components of cells. By comparing SERS spectra among normal 
and the other three types of cancer cells, we can find that the SERS signal 
of MCF-10A cells shows noticeably different peak distribution from 
those of cancer cells. Specifically, the normal cells show a prominent 
peak only in the 600–800 cm− 1 region, whereas the cancer cells show 
peaks scattered over a broader range. Among the three cancerous cell 
groups, the SERS spectra of highly malignant HCC-1806 and MDA-MB- 
231 cells show significant intensity variations with a much wider signal 
distribution compared to moderately malignant MCF-7 cells. This dif
ference reflects the inherent cancerous heterogeneities associated with 
the degree of malignancy, including distinct molecular signatures and 
variations in the molecular composition of cancer cells [42].

As shown in Fig. 4, all cancer cells (4B-4D) reveal more peaks in the 
lipid-relevant region (1050–1500 cm− 1) compared to normal cells. 
Notably, highly malignant cancer cells show higher SERS intensities in 
the lipid-relevant region, reflecting enhanced lipid content due to 
increased synthesis of fatty acids and phospholipids [43]. Furthermore, 
the characteristic peaks of each cell type can indicate specific and 
comprehensive biochemical information. A few characteristic peaks 
observed in the spectra reveal that the measured SERS signals originate 
from viable living cells. The presence of the C-C stretching skeletal of the 
acyl backbone in the lipid peak (1129 cm− 1), which is directly related to 
components of cell membranes, reflects a healthy state of the cells 
[27,44]. Moreover, the appearance of the cholesterol peak (416 cm− 1) 
supports cellular membrane fluidity [30,44]. The good viability is 
further confirmed by the absence of benzene ring stretching (1000 
cm− 1) and N− H out-of-plane bending (1585 cm− 1) modes associated 
with the cellular death dynamics [45]. Additionally, the observation of 
characteristic peaks can reveal the biological differences between 
normal and cancer cells. For example, breast cancer cells show stronger 
phenylalanine (645 cm− 1) and tyrosine (1178 cm− 1) peaks compared to 
normal cells [44]. These differences may indicate overexpression of 
aromatic amino acids and increased protein content in cancer cells, 
reflecting metabolic abnormalities and enhancement of protein disorder 
within the cells [46]. While the averaged spectra effectively reveal 
biological characteristics, the averaging process within each cell group 
may mask critical information present at low concentrations of bio
molecules. Furthermore, manual interpretation of data is not only un
reliable due to its subject peak assignment and lack of consistency, but it 
is also highly inefficient. Therefore, multivariate analysis can play a 

significant role in extracting distinctive characteristics from a large 
volume of complex SERS data containing various biochemical infor
mation of each cell group.

3.4. Multi-class classification by PCA-LDA

We performed multi-class classification using PCA-LDA to efficiently 
analyze rich bio-fingerprint information from living cells and distinguish 
cell types. PCA, a dimensionality reduction technique, simplifies a large 
dataset into a smaller one while preserving key patterns and trends [47]. 
Fig. 5A shows the plot of PC scores for four different cells. The PC score 
plot reveals that HCC-1806 (red) and MDA-MB-231 (blue) show broader 
dispersion compared to MCF-10A (green) and MCF-7 (yellow). These 
data distributions for each group of cells are consistent with their bio
logical property, reflecting inherent cancerous heterogeneities associ
ated with the degree of malignancy. PC scatter plot allows for a visual 
interpretation of the dataset variability that may help determine simi
larities and differences between cell types. However, since PCA does not 
consider interclass variability, it was used as a tool for dimensionality 
reduction to extract essential characteristic information as input for 
subsequent LDA.

To conduct multi-class classification, LDA, a supervised technique 
used to find a linear combination of features that best separates different 
classes, was performed. Since using an unnecessarily high number of PCs 
may lead to over-training, using the entire PCA dataset for LDA is not 
feasible. Therefore, to preserve the essential characteristics of the data 
while reducing dimensions and improving computational efficiency, 
only the PCA data within the range of 95 % cumulative variance was 
used as input for the LDA [48,49]. Fig. 5B-D show PCA-LDA score plots 
based on the orthogonal LD1, LD2, and LD3 axes that maximize the 
distinction between classes, with the axes for LD1-LD2, LD1-LD3, and 
LD2-LD3. The results visualized in the 2D plot of PCA-LDA reveal that 
intra-class cohesion is high, and the distinction between different classes 
is more pronounced. The 3D representation of PCA-LDA for four classes 
in Fig. 5E clearly shows the distinction between the cell types through 
the visible clustering of each group. While each cell type was success
fully distinguished, slight overlapping scatter distributions were 
observed between the two MCF groups and the two TNBC groups. These 
overlap may reflect their similar cellular network expression, such as 
lipid contents and surface proteins.

Leave-one-out cross-validation (LOOCV) was then performed to 
validate the predictive ability of the PCA-LDA classifier. This approach 
maximizes the use of data by ensuring that each single sample serves as a 
test point while the model is trained on the remaining data points, of
fering a thorough evaluation of the model. Fig. 5F displays the multi- 
class classification results as a histogram, showing accuracies of 86.7 
% for MCF-10A, 95.9 % for MCF-7, 93.4 % for HCC-1806, and 92.5 % for 
MDA-MB-231, resulting in an average accuracy of 92.5 %. The corre
sponding confusion matrix is shown in Fig. S2. False predictions in the 

Fig. 4. Representative average SERS spectra of living cells with the 5th and 95th percentiles and biological characteristic peaks (A) MCF-10A, (B) MCF-7, (C) HCC- 
1806, and (D) MDA-MB-231. The numbers of spectra for each cell type are 422 for MCF-10A, 538 for MCF-7, 561 for HCC-1806, and 560 for MDA-MB-231.
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confusion matrix between the two MCF groups and the two TNBC groups 
further support their scatter overlap observed in Fig. 5E, likely due to 
their similar cellular expression. A high classification accuracy confirms 
that the 3D vertical nanostructure substrate successfully enabled a 
reliable label-free SERS for living cells and captured a large volume of 
rich biological information. This result supports the potential for multi- 
class label-free bioanalysis of living systems, as it demonstrates the 
ability to classify four different subtypes from the same organ, which is 
more challenging than classifying cells from intrinsically different 
organs.

4. Conclusion

Previously, the difficulty of reliably acquiring a large volume of SERS 
data from living cells posed a significant challenge for the multi-class 
classification. In this work, we have employed a 3D protruding 
nanostructure-based high-performance nanolaminate SERS substrate 
and obtained high-quality and large-volume SERS datasets via label-free 
living cell SERS mapping. The key enabling factor is the uniform 
arrangement of MIM building blocks over a large area with 3D vertical 
nanotopography, which induces a tight membrane-hotspot interface. We 
investigated the optical properties of nanolaminate SERS substrates, 
including broad plasmon resonances and gap-based high-field en
hancements, which are beneficial for high-quality data acquisition. We 
conducted label-free high-throughput 2D SERS mapping for four 
different living breast cell types, including normal (MCF-10A) and 
cancerous (MCF-7, HCC-1806, and MDA-MB-231) cells. We acquired a 
large volume of datasets (n > 2000) containing characteristic biological 
signatures and employed PCA-LDA to extract key features and perform 
multi-class classification. We demonstrate an accuracy of 92.5 % with 
LOOCV, indicating that the conventional multivariate analysis method 
alone can effectively classify cancer subtypes as long as reliable and 

high-quality SERS datasets are provided. This result implies that the 
label-free living cell SERS platform can potentially be used for precise 
and rapid diagnosis of cancer subtypes, which may facilitate timely 
treatment and improved prognosis. Furthermore, future integration 
with advanced machine learning methods may enable more complicated 
cancer studies with external stimuli such as chemotherapy and resis
tance development.
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