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Abstract
This paper presents a new cell culture platform enabling label-free surface-enhanced Raman spectroscopy (SERS)
analysis of biological samples. The platform integrates a multilayered metal-insulator-metal nanolaminated SERS
substrate and polydimethylsiloxane (PDMS) multiwells for the simultaneous analysis of cultured cells. Multiple cell lines,
including breast normal and cancer cells and prostate cancer cells, were used to validate the applicability of this
unique platform. The cell lines were cultured in different wells. The Raman spectra of over 100 cells from each cell line
were collected and analyzed after 12 h of introducing the cells to the assay. The unique Raman spectra of each cell line
yielded biomarkers for identifying cancerous and normal cells. A kernel-based machine learning algorithm was used to
extract the high-dimensional variables from the Raman spectra. Specifically, the nonnegative garrote on a kernel
machine classifier is a hybrid approach with a mixed nonparametric model that considers the nonlinear relationships
between the higher-dimension variables. The breast cancer cell lines and normal breast epithelial cells were
distinguished with an accuracy close to 90%. The prediction rate between breast cancer cells and prostate cancer cells
reached 94%. Four blind test groups were used to evaluate the prediction power of the SERS spectra. The peak
intensities at the selected Raman shifts of the testing groups were selected and compared with the training groups
used in the machine learning algorithm. The blind testing groups were correctly predicted 100% of the time,
demonstrating the applicability of the multiwell SERS array for analyzing cell populations for cancer research.

Introduction
Cancer is one of the leading causes of death worldwide

and is involved in approximately 9 million deaths each
year1. Current therapies for cancer are rarely curative and
suffer from limitations such as the lack of specific drug
targets, off-target nonspecific drug toxicities, and multi-
drug resistance, all of which can benefit from a better
analysis and understanding of tumor populations2. Dis-
tinguishing between cancerous cells and normal cells at
an early stage of diagnosis is critical for early prediction,
early intervention, and ultimately the suppression of the
proliferation and metastatic potential of primary tumors
in potential cancer patients. Based on a decent diagnosis
of cancerous cells in biopsy samples, specific treatment

plans can be determined for each cancer patient, which is
essential in “precision medicine”3. The characteristics of
different subtypes of tumor cells can facilitate the accurate
diagnosis and effective treatment of specific tumors. The
precise diagnosis of cancer cells from different stages or
subtypes is a challenging task in clinical trials. To diag-
nose cancer cells from normal cells, the cell culture assay
has been widely used in clinical practice with label-based
immunohistochemistry (IHC) studies, which target spe-
cific cell protein expressions. However, the diagnosis of
different cancer subtypes, such as different subtypes of
breast cancer or prostate cancer, requires further labeling
techniques4. Labeling techniques for both breast cancer
and prostate cancer cells are widely used in clinical
practice.
Multiwell arrays for cell cultures, either as commercially

available products or custom-made polydimethylsiloxane
(PDMS) devices, have played a significant role in basic
cancer research and clinical cancer diagnosis. Multiwell
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arrays allow cell growth, metastasis, migration, and drug
testing of a large number of variables in parallel5. In
addition, multiwell arrays require only 50–60 µL samples
per well, thus conserving biopsy tissue and analysis cost.
There have been efforts to integrate different sensing
mechanisms with multiwell cell culture substrates to
perform label-free analysis. Some of these sensing tech-
niques include bioimpedance spectroscopy, piezoelectric
sensors, and optical biosensors. For example, microelec-
trode arrays (MEAs) have become commercially available
for bioimpedance measurements of cultured cells. Mul-
tiwell platforms with embedded MEA can be used to
monitor the long-term bioimpedance variation during cell
metabolism and proliferation and can also be used to
study the drug treatment response5. Surface coating of
MEAs with nanoparticles can facilitate studies of cellular
interactions with the extracellular matrix (ECM) via
bioimpedance spectroscopy. Piezoelectric biosensors can
also be integrated into cell culture platforms for cell
subtype recognition. Usually, a piezoelectric crystal is
functionalized to capture a certain type of cell.
Researchers found that the cells on a quartz crystal will
generate a unique oscillating frequency, which can be
used to identify a type of cell with common surface
markers6. However, the functionality of the piezoelectric
crystal relies on the selection of the surface markers of
cells. In addition, the sensitivity of the crystal itself
determines the sensitivity of this mass-based transducer
for sensing cultured cells7. Another sensing technique
utilizes optical sensors to detect cancer cells, such as
photonic crystal biosensors8. The optical biosensor can
also be made onto the multiwell culturing plate9. After the
cells attach to the sensors, the proliferation of the cancer
cells can be observed by proper imaging methods9. In this
paper, for the first time, we report the integration of
scalable surface-enhanced Raman spectroscopy (SERS)
substrates with multiwell cell culture platforms for the
label-free SERS profiling and machine learning classifi-
cation of subtypes of living cancer cells.
By the plasmonic enhancement of both the excitation

and inelastic Raman scattering processes of molecules in
hot spots of metal nanostructures, SERS can increase the
sensitivity of Raman spectroscopy by many orders of
magnitude with a detection limit down to the single-
molecule level10–12. Therefore, SERS has emerged as an
ultrasensitive molecular spectroscopy technique for the
label-free monitoring and analysis of living biological
systems, which can potentially mitigate the limitations of
conventional fluorescence techniques13,14. H. Wu et al.
developed a gold SERS substrate on graphene nanosheets
that showed sufficient sensitivity to differentiate between
breast cancer cells and breast cancer stem cells15. D.
Gracias et al. developed a mechanical trap SERS array on a
quartz substrate to collect Raman scattering of the

trapped breast cancer cell line MDA-MB-23116. C. Zhong
et al. used magnetic focusing by magnetic beads coated
with cancer cell biomarkers to trap cancer cells and col-
lected SERS spectra of the trapped cells17. Unfortunately,
trapping cells by means of a mechanical trap or antibody
affiliated capturing method adds additional noise to the
Raman spectra, which reduces the consistency of the
Raman detection or imaging of the cancer cells. W. Zhou
et al. developed scalable high-performance SERS sub-
strates based on multistack vertically oriented nanogap
hot spots in metal-insulator-metal (MIM) nanolaminated
plasmonic structures18,19. The recently published work
reports the novelty in the physics of refractive-index-
insensitive nanolaminated SERS substrates targeting the
label-free spatiotemporal Raman biochemical analysis of
living biological systems19. Nanolaminated SERS sub-
strates based on multiresonant multilayered metal-
insulator-metal plasmonic nanostructures can support
optically dense and uniform arrays of hot spots with very
large and consistent SERS enhancement factors (>107)
that are insensitive to a wide range of background
refractive indices (n= 1.30–1.60). Both the numerical
simulations by 3D finite-difference-time-domain (FDTD)
and experimental results indicated that the nanolami-
nated SERS substrate has high sensitivity and uniformity
simultaneously. Both high sensitivity and good uniformity
of SERS hot spots were achieved by optically dense and
highly uniform arrays of vertically oriented hot spots.
SERS can distinguish the differences in biochemical
environments between the cytosol, nucleus, and extra-
cellular matrix through molecular vibrational sig-
natures13. Molecular event dynamics of apoptosis in living
cancer cells, including protein denaturation, proteolysis,
and DNA fragmentation, can be observed in real-time.
The analysis of SERS spectra is usually performed by

principal component analysis (PCA). PCA is a popular
unsupervised learning approach. PCA has been used as a
dimension-reduction tool that can reduce a large set of
variables to a small set that contains most of the infor-
mation in the large set. Since the Raman peaks at different
wavenumbers can be viewed as high-dimensional vari-
ables, machine learning algorithms have been applied to
analyze the data from SERS spectra. J. Liu et al. published
studies on cancer research using SERS nanoparticles for
Raman imaging and predicted that machine learning
methods can accurately identify tumor SERS imaging,
which represents unique biomarker expression signatures
at the molecular level20. N. Othman et al. used the k-
nearest neighbor (k-NN) algorithm to analyze SERS
spectra integrated with PCA21. However, the k-NN algo-
rithm is nonparametric without a particular model to fit.
In this report, we demonstrated a novel nanolaminated

SERS substrate integrated multiwell cell culture assay for
label-free Raman profiling and classification of living
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cancer cells. A nonnegative garrote on the kernel machine
(NGK) algorithm was used to analyze the SERS spectral
data collected from two triple-negative breast cancer
(TNBC) cell lines, i.e., one normal breast epithelial cell
line and one prostate cancer cell line.

Results
Cell lines
We used a modified version of a PDMS multiwell array

incorporated with nanolaminated plasmonic structures to
measure the Raman spectra of cultured cells. The bright
field images of the cell morphologies shown in Fig. 1a-d

were taken through an objective lens (×10) before the
Raman measurements. Due to the different growth rates
of each cell line, the final cell density may vary even
though the seeded cell suspension solutions were
approximately 4 × 105 cells/mL. The representative spec-
tra of each cell line are shown in Fig. 1e-h. Each color
represents an independent Raman spectrum. The Raman
spectrum shown here is the data after background sub-
traction. The Raman spectrum of the SERS substrate
without cells is recorded as the background (Fig. S1 in the
supplementary information). The remaining spectrum is
the effective information of the Raman spectrum of the
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Fig. 1 Bright field images of the cells and the Raman measurement results. Morphology images of the cells in multiple wells: a MDA-MB-231,
b HCC-1806, c MCF-10A, and d LNCaP-C4-2 cells and four examples of the Raman measurement results of each cell line: e MDA-MB-231, f HCC-
1806, g MCF-10A, and h LNCaP-C4-2 cells
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cells and Rayleigh peak. The data selected between 400
and 1800 cm−1 represent the Raman spectrum of the
cells. Different spectra for each cell line show different
Raman peak positions and intensities. The single and/or
combination of peaks act as a fingerprint to identify a cell.
The Raman peaks can be correlated to possible bio-
chemical attributes, as listed in Table 122–36. Interestingly,
more than 3 different features are observed in each case.
This finding is highly associated with the larger sizes of
cells compared to those of nanoantennas so that
nanoantennas can collect signals from different nanoscale
regions of the cells where the distributions of biomole-
cules may be different.

Data analysis
The NGK machine learning method was used to analyze

the SERS spectra of the four cell lines. The comparison
and predictions were performed between every two sets of
cell lines. The Raman spectra with peak intensities (a.u.)
over 2000 will be identified as outliers. The prediction
values in Fig. 2a include the outliers in each sample, which
already reach over 88%. The prediction values without
outliers (data not shown in Fig. 2) reached 91% (MDA-
MB-231 vs. HCC-1806), 96% (MDA-MB-231 vs. MCF-
10A), and 96% (HCC-1806 vs. MCF-10A). Defining the
outliers in Raman spectroscopy is based on experience
and SERS substrate performance.
The box plot in Fig. 2a depicts the prediction values of

the two cell lines. A comparison of two TNBC cell lines

MDA-MB-231 and HCC-1806 indicates a prediction
value of 86.5–90.4% in the 10-fold cross validation (CV).
The NGK machine learning 10-fold CV results showed a
prediction value of 87.0–89.4% between MDA-MB-231
and MCF-10A and a prediction value of 86.5–91.4%
between HCC-1806 and MCF-10A. The prediction value
between the breast cancer cell line MDA-MB-231 and the
prostate cancer cell line LNCaP-C4–2 reached
92.8–95.7%. HCC-1806 and LNCaP-C4-2 showed higher
prediction values of 95.2–100%. MCF-10A and LNCaP-
C4-2 showed the highest prediction value of 99.3–100%
among all the comparisons. The prediction values
between breast cells and prostate cancer cells (the three
boxes on the right side of Fig. 2a) are higher than those of
different breast cells (the three boxes on the left side of
Fig. 2a). The highest difference falls into the prediction of
prostate cancer and normal breast cells (MCF-10A vs.
LNCaP-C4-2 in Fig. 2a).
The purpose of the blind test is to determine whether

our presented technique can correctly identify the cell
lines. Blind testing groups with the four cell lines were
used to validate the reproducibility and reliability of the
biostatic SERS analysis of the cells. After collecting the
data from newly cultured cells, the Raman intensities at
the specific peaks in Table 1 were calculated and com-
pared with the original measurement results. Notably,
although the peak location of an isolated functional group
is typically known, the actual peak locations may slightly
differ due to interactions and bonding with its neighbors.

Table 1 Selected Raman peaks and the possible correlated biochemical attributes

Peaks (cm−1) Possible attribution References

588 Acetoacetate 22

679 Proteins 23,24

699 Phosphatidylcholine, lipids 25

757 Cytochrome, tryptophan 26,27

766 Fumarate 22

878 C–C–N+ stretching 27

889 Glycine 22,29,30

1020 Phenylalanine 28–31

1080 Proteins: stretching C–N; carbohydrates: stretching C–O 27,32,33

1158 Acetoacetate 22

1230 Amide III (β-sheet) 28,34

1260 Fumarate 22

1380 Proteins: twisting (CH2, CH3)
33

1460 Histidine 28

1670 Amide I: C=C tyrosine, tryptophan, lipids, stretching (C=C) olefinic 27,32,36

1740 Lipids, C=O ester 27
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The peaks located at a specific wavenumber can have a
shift of 3–5 cm−1 due to the molecular interaction with
the SERS substrate. Therefore, to increase the robustness
of the measurement results, the peaks were selected by
comparing the intensities of the Raman shifts with the two
wavenumbers nearby. Then, the highest intensity number
of the three Raman shifts was identified as the intensity.
The box plots in Fig. 2b demonstrate the minima (lower
black line), Q25 (lower blue line), Q50 (median, red lines),
Q75 (upper blue line), and maxima (upper black line)
values of the experimental and testing groups.
The box plot in Fig. 2b depicts the paired blind test

groups (TGs: TG1, TG2, TG3, and TG4) with the stan-
dard measurement groups. By matching the TGs with the
measured cell lines, TG1 was recognized as LNCaP-C4-2
(t= 1.99, p= 0.024); TG2 was recognized as MDA-MB-
231 (t= 1.22, p= 0.099); TG3 was recognized as MCF-
10A (t= 5.79, p < 0.0001); and TG4 was recognized as
HCC-1806 (t= 1.48, p= 0.071). This result is a 100%
match with the record before the TG experiments.

Discussion
For the practical use of SERS substrates for biological

and clinical applications, high sensitivity and uniformity
along with biocompatibility and a high-throughput
screening ability are required12. Nanolaminated plas-
monic structures can simultaneously achieve the two
major requirements of SERS performance, that is, sensi-
tivity and uniformity by out-of-plane engineered multiple
vertically oriented nanogap hot spots based on Au-SiO2-
Au building blocks19. Our recently published work in
Nano Letters reports a novelty in the physics of RI-

insensitive nanolaminated SERS substrates targeting the
label-free spatiotemporal Raman biochemical analysis of
living biological systems19. The majority of SERS sub-
strates are too small to be incorporated. However, our
nanolaminated SERS substrate can effectively solve this
problem. A cost-effective, facile, and time-saving fabri-
cation process is available for clinical studies, and this
lithography-free method on a large scale enables the
incorporation of SERS into a PDMS multiwell array for
parallel testing. The combination of molecular informa-
tion from different regions can uniquely represent a cer-
tain type or status of cells. Out-of-plane engineered
nanostructures interfacing with cells show better adhesion
to cell membranes than flat surfaces37,38. This property
provides lower cell mobility on the device and accordingly
forms a microenvironment underneath the cells where
biomolecules can be efficiently sensed. The contact
between the SERS substrate and the cell membrane and
the transmembrane proteins generates an interaction
between the chemicals and nanopillars, which can effec-
tively create unique biosignatures in the SERS spectra.
The peaks appearing at different Raman shifts are corre-
lated with the cell lipid membrane components and spe-
cific molecules, including proteins and specific DNA or
RNA sequences39. The SERS detection of cancer-specific
metabolic profiles involving glucose, glutamine, aspar-
agine, aspartate, acetate, and lactate, for example, are
likely to contribute to the SERS biosignatures. The pre-
ferential glycolytic activity of tumor cells, first described
as the Warburg effect, means that the primary energy
source for tumor cells is glucose40. Tumor cells take up
glucose at higher rates than normal cells and secrete
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higher levels of lactate, resulting in the localized acid-
ification of their microenvironment. Tumor cells in cul-
ture shunt glutamine through these pathways and satisfy
their increased metabolic demands for nitrogen via the
high uptake of glutamine and asparagine. Tumor cells
maintain high levels of de novo fatty acid synthesis and
histone acetylation, which are sustained by elevating the
uptake of acetate from the culture medium. The Raman
wavenumbers for these specific proteins are correlated to
their specific amino acids. Based on the NGK method
selected Raman wavenumbers, the peaks from proteins
and amino acids are found at wavenumbers of 588, 679,
889, 1020, 1080, 1158, 1380, and 1460 cm−1. The genetic
differences among the four cell lines also contribute to the
different expression of transmembrane proteins. MDA-
MB-231 cells express P-cadherin and/or cadherin-11
(without N-cadherin), which promotes motility and
invasiveness as an aggressive TNBC cancer cell line41. At
the same time, MDA-MB-231 cells express vimentin
(Basal B), while HCC-1806 is a special non-Basal A, non-
Basal B epithelial TNBC cell line without vimentin
expression42. MCF-10A is derived from the mastectomy
of a benign tissue, representing normal epithelial breast
cells, which is also Basal B in molecular classification.
MCF-10A cells demonstrate spontaneous morphological
changes in response to different confluence statuses. The
analysis of Raman spectra indicates good separation
between the breast cancer and breast normal cells. In
addition, the difference between the Basal B and non-
Basal B subtypes can also be differentiated by Raman
scattering. The detection sensitivity of Raman spectro-
scopy and the machine learning algorithm is sufficient to
identify the different subtypes of breast cancer cell lines.
Prostate-specific membrane antigen (PSMA) is a protein
encoded by the float hydrolase-1 gene that exists in the
LNCaP-C4-2 cell line43. The genetic information carried
by different combinations of adenine, thymine, guanine,
and cytosine is represented by Raman wavenumbers of
1423, 1210, 1315, and 1533 cm−1, respectively. Our
Raman wavenumbers with possible correlated biochem-
icals listed in Table 1 match the possible biochemical
attributes from multiple studies in the literature22–36. The
high prediction values and accurate prediction of blind
testing groups can be explained by the biological prop-
erties of the cells. As illustrated in the SEM image in Fig.
4, the membrane proteins, including cadherins, reach the
multilayered MIM nanopillars. The filopodia and lamel-
lipodia are extended to cover the nanopillars, which
enables the chemical exchanges sensed by Raman spec-
troscopy. The culture medium under filopodia and
lamellipodia is enriched with cell-secreted metabolites
and cell signaling mediators, including proteins, small
molecules, and exosomes. Therefore, the multilayered
MIM nanopillars can sense the exchange of cellular

products across the plasma membrane into the culture
medium and represent the biosignatures of the specific
cells by the Raman signals.
Raman spectra can be viewed as high-dimensional

variables with dependent relationships. Applying machine
learning techniques to Raman spectroscopy data analysis
can achieve results with predictive power. A machine
learning method that has been used in SERS data analysis
is the support vector machine (SVM) algorithm. S. Li et al.
presented a genetic algorithm analyzing the histogram of
the peaks in the Raman spectra of bladder cancer44.
However, finding the separating hyperplane of the SVM
method for training the data sets is very time-consuming.
The performance of SVM depends on tuning parameters.
Another popular supervised learning classifier is a neural
network classifier (NNT). NNT also shows promising
applications for molecular level biosensing. However,
neural networks extend the basic idea used in the per-
ceptron model, in which the input is directly connected to
the output. NNT comprises multiple layers of logistic
regression models with continuous nonlinearities.
Therefore, the performance of NNT depends on the
number of layers, the estimates of the weight vector, and
the active functions. Both SVM and NNT methods
assume the independence of outputs, while our NGK
approach does not. Hence, SVM and NNT cannot be
applicable when there exists a possible dependence
among outputs. In addition, both SVM and NNT are
discriminative classifiers but are not dimension-reduction
tools. NGK can be considered a hybrid approach that is a
mixed nonparametric model and a kernel machine tool45.
Using a training set, we built NGK classifiers that were
required to estimate a nonparametric function but that
did not assume a particular function form. This non-
parametric function is estimated via a Gaussian process,
which is known as a family of nonparametric functions.
The real-time characterization and differentiation of

biochemical properties of living cells remain a significant
challenge in biological science and technology. In parti-
cular, monitoring the biochemical signatures and beha-
viors of cells will help the identification of upregulated or
downregulated pathways, the discovery of biomarkers
related to specific pathologies or diseases, or the under-
standing of cellular responses to environmental changes.
Such studies will facilitate the investigation of the
underlying mechanisms behind different diseases and
eventually contribute to early medical diagnostics. In situ
detection of the biochemical properties of cells at sub-
cellular resolution imposes difficult constraints on the
measurement tools. However, the multiwell array inte-
grated with nanolaminated SERS substrates presented in
this paper can offer a label-free and potentially automated
approach to the high content analysis of individual patient
tumors and a new approach for the rapid identification of
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diagnostic biomarkers. In addition, this technique can be
suitable for future development to evaluate anticancer
drug sensitivity in tumor cell populations.
The multilayered MIM nanolaminated SERS substrate

incorporated with a PDMS multiwell array acquired stable
Raman spectra of prostate cancer, breast cancer, and
normal breast epithelial cells. The introduced kernel-
based machine learning technique successfully extracted
the significant peaks from the Raman spectra to identify
the cell types. The results of blind test groups proved the
stability, reliability, and reproducibility of our technique.
The multiwell array can be useful in analyzing biopsy
samples with small amounts of samples. In addition, this
device can be used to identify specific cancer subtypes.
Analyzing cell mixtures that are present in a tissue sample
by SERS is the next phase of development. Previously, we
performed the biomechanical analysis of cell mixtures of
normal and cancerous breast tissue obtained from
patients with breast cancer45. We demonstrated that the
biophysical attributes can be used to differentiate between
the tumor tissue and adjacent normal tissue with machine
learning algorithms. We envision that multiwell SERS
technology will provide molecular profiling biostatistical
information within spatially resolved SERS spectra to
predict the presence of tumor cells in a heterogeneous cell
population. In the future, applying SERS to biopsy sam-
ples might help define the margins of the tumor tissue, an
important clinical application. However, the introduction
of SERS bioanalysis technology into intraoperative real-
time diagnosis is still very challenging, requiring (1) the
advanced engineering of flexible SERS device arrays to
seamlessly interface with tissues, (2) significant instru-
mentation engineering for the real-time Raman spectro-
scopy mapping of tissues integrated with SERS device
arrays, and (3) efficient and adaptive machine learning
techniques to allow for real-time closed-loop bioanalysis
and diagnostics. We believe the results demonstrated in
this work provide some promising possibilities for clinical
applications.

Materials and methods
Cell culture
The breast cancer cell line MDA-MB-231 (passage #8,

American Type Culture Collection (ATCC, Manassas,
VA), provided by Dr. Yasmine Kanaan, Howard Uni-
versity College of Medicine) was grown in F12:DMEM
(Lonza, Basel, Switzerland) with 10% fetal bovine serum
(FBS), 4 mM glutamine and penicillin-streptomycin (100
units per mL). The African American breast cancer cell
line HCC-1806 (passage #5, ATCC, provided by Dr.
Yasmine Kanaan, Howard University College of Medicine,
Washington, DC) was grown in ATCC-formulated RPMI-
1640 medium with 10% FBS. Both MDA-MB-231 and
HCC-1806 are estrogen receptor-negative (ER-),

progesterone receptor-negative (PR-), and human epi-
dermal growth factor receptor 2-negative (HER2-) breast
cancer, named triple-negative breast cancer (TNBC).
MCF-10A cells (passage #20, Lombardi Comprehensive
Cancer Center, Georgetown University) were grown in
F12:DMEM with penicillin-streptomycin (100 units per
mL), 2.5 mM L-glutamine, 20 ng/mL epidermal growth
factor (EGF), 0.1 μg/mL cholera toxin, 10 μg/mL insulin,
0.5 μg/mL hydrocortisone, and 5% horse serum. The
prostate cancer cell line LNCaP-C4-2 (passage #11, pro-
vided by Dr. Bethany Kerr, Wake Forest University School
of Medicine, Winston-Salem, NC), green fluorescence
protein (GFP) by lentiviral transduction, was grown in
RPMI-1640 (L-glutamine) with 10% FBS and 1% PenStrep
(100 U/mL penicillium and 100 μg/mL streptomycin). All
of the cells were grown in T-25 cm2 culture flasks at 37 °C
in a 5% CO2 in air atmosphere until the cells were ready
for subculture. The morphology of the cells was observed
before trypsinization. The cells were then detached from
the flask with a trypsin-EDTA solution (Sigma Aldrich, St.
Louis, MO). MDA-MB-231, HCC-1806, MCF-10A, and
LNCaP-C4-2 cells were trypsinized at 37 °C for 2 min,
8 min, 15 min, and 5 min, respectively. The passage
numbers used for the 4 cell lines in this manuscript were
below 20. The variation in the properties of cell lines can
still be considered stable46,47. The culture environment
was kept constant during the cell cultures. Furthermore,
the experimental environment was also kept identical
during all these SERS experiments. Because the cells are
living cells, they actively divided during the experiments.

SERS substrate fabrication
The entire fabrication process was recently published18.

Three-dimensional finite-difference time-domain (FDTD)
analysis and experiments were performed to optimize the
dimensions of the multilayered MIM nanolaminated
plasmonic structures48. The fabrication procedure is
briefly described in Fig. 3 (the detailed fabrication pro-
cedures are available in the supplementary information).
Step ➀: UV-curable polyurethane (PU) was squeezed onto
a flexible and optically transparent polyester (PE) film
with a thickness of 100 µm and then was molded using a
PDMS stamp to make nanopillar arrays (NPAs). The
sample was cured by UV for 10min, and the PDMS stamp
was then peeled off. An additional heat-curing process
was performed in a convection oven at 80 °C overnight.
Step ➁ : we deposited alternating layers of Au and SiO2 by
electron-beam deposition on the NPA. The nominal
thicknesses of the four Au layers and the three SiO2 layers
were 30 nm and 6, 8, and 12 nm from bottom to top. Step
➂: A buffered oxide etchant (BOE) solution was used to
etch the SiO2 layers for 30 s. This process activates latent
hot spots buried in the nanogaps, which are physically
unapproachable for molecules before etching. The photo
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image (a) in Fig. 3 highlights a representative sample size
fabricated on a flexible and optically transparent sub-
strate. The vivid rainbow color diffraction pattern reflects
the uniformity of periodic nanostructures on the sample
over a wafer-scale area. As shown in Fig. 3c, nanolami-
nated plasmonic structures can strongly concentrate local
optical fields in the nanogaps to generate plasmon-
enhanced Stokes Raman scattering signals IS(ωO−ωvib)
of the analyte molecules from the excitation light IO(ωO),
where ωO and ωvib are the excitation laser frequency and
molecular vibration frequency, respectively. The vertical
stacking of MIM building blocks and activation of nano-
gaps form multiple vertically oriented nanogap hot spots.
This unique geometrical configuration enables our SERS
substrate to achieve both sensitivity and uniformity and
reduce the footprint and volume of the device, thereby
allowing signal acquisition from the different nanoscale
environments of cells.

Multiwell array fabrication
The multiwells were molded by a PDMS molding

replica with an aluminum mold. The aluminum mold has
4 by 4 cylindrical pillars with a diameter of 4 mm. The

PDMS prepolymer (SYLGARD® 184 silicone elastomer,
Dow Corning, Midland, MI) and curing agent (SYL-
GARD® 184 silicone elastomer curing agent, Dow Corn-
ing, Midland, MI) were mixed at a weight ratio of 10:1.
Tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane
(TFOCS, Fisher Scientific, Hampton, NH) was coated on
the surface of the silicon wafer (single-side polished 4-
inch silicon prime wafer) and the aluminum mold for the
easy release of PDMS. The PDMS mixture was then
placed in a vacuum container for 30min to remove all the
air bubbles. The degassed PDMS mixture was poured
onto the silicon wafer with aluminum molds placed on the
wafer surface and placed on a 90 °C hotplate for 12 h for
the solidification of PDMS. Then, the PDMS was peeled
off from the silicon wafer and the aluminum mold (Fig. 3
step ➃). Each PDMS well was 4 mm in diameter and
4mm in height. The PDMS multiwell was then trimmed
to match the dimensions of the SERS substrate.

Multiwell cell culture platform integration
We employed a new fabrication method to prepare a

PDMS multiwell array-incorporated SERS substrate.
Notably, we used a thin PDMS layer as an intermediate

Nanolaminated
SERS sustrate

PDMS multiwell array

Film substrate

Polyurethane (PU) Aluminum mold

PDMS
mixture

Si wafer

Bonding with
“PDMS glue”

(50 °C)

Multiwell incorporated
SERS substrate 

(perspective view)

Multilayered MIM 
deposition

SiO2

Au

PU

Curing at 80 °C

MIM nanopillar

Fabrication Processes

1cm

a
b

c

Multiwell incorporated
SERS substrate

BOE etching

Film substrate

IO(�
O)
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(�O
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UV curing
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PDMS stamp
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1

2

3

5
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Fig. 3 SERS substrate and multiwell array fabrication and assembly processes
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adhesive film to bond the PDMS multiwell array and the
SERS substrate coated with gold. The PDMS prepolymer
and curing agent were fully mixed and preserved in a
refrigerator (−18 °C), which guaranteed full mixing. The
freshly made PDMS mixture can be cured at 60 °C in 2 h;
however, the premixed PDMS preserved in the refrig-
erator can be cured at 60 °C within less than 30min,
which can function as the “PDMS glue” (Fig. 3 step ➄)49.
The secondary curing temperature was kept below 70 °C
to protect the nanostructures of the SERS substrate. The
preserved PDMS mixture was injected from a syringe with
a 0.3 mm needle tip to dispense a thin line on the PDMS
multiwell array. Then, the assembled device was trans-
ferred to a 60 °C hot plate with a 200 g weight on the top
to improve contact. After 30 min of curing, the assembled
device was ready for cell culturing. The photo image (b) in
Fig. 3 shows a final SERS substrate successfully incorpo-
rated with a PDMS multiwell array, and the dark feature
of the sample in the visible range confirms broadband
light absorption.

Experimental setup
For the SERS measurement of different cell lines, each

cell line was harvested and cultured on the multiwell array
incorporated with the SERS substrate. The cells were
harvested and diluted to a concentration of ~4 × 105 cells/
mL. Each well contained a volume of 60 µL. The device
was then placed in an incubator at 37 °C with 5% CO2 in
an air atmosphere for 12 h to allow the cells to attach to
the nanoantennas. After attachment, the device was
mounted on a piezo-driven scan stage for the SERS
measurement. Cell mitosis was observed within 30 min
under a bright field microscope, which confirms the cell
viability on the SERS substrate. A ×10 objective was used,
and the power of the infrared laser (wavelength: 785 nm)
was 2.5 mW. The scan stage was manually adjusted to
search for the Raman signals. The acquisition of a single
spectrum from the points of interest was performed by
taking 10 accumulations of 2 s integration time.
SEM characterization was performed using either an

LEO (Zeiss) 1550 field emission scanning electron
microscope (FESEM) or a Helios 600 Nanolab dual-beam
(FEI) with an in-lens detector (represented in Fig. 4). The
cultured cells were rinsed with warm (37 °C) PBS solution
twice before fixation. The cells were chemically fixed with
2.5% glutaraldehyde in PBS solution for 1 h at room
temperature. The samples were rinsed with PBS twice and
postfixed with 1% osmium tetroxide (OsO4), followed by
dehydration in a graded ethanol series from 15 to 100%
(each condition was carried out for 15min). After dehy-
dration, the samples were dried by a critical point drier
(CPD) in liquid CO2. PtPd (5 nm) was sputtered, and the
samples were directly mounted on specimen holders. The
enlarged SEM image in Fig. 4 shows that the lamellipodia

and filopodia are extended to the nanoantenna array. The
surface proteins are stretched and attached to the top of
the nanoantennas. The cross section of the SEM image
shows an interface between the cell and the SERS sub-
strate. Some part of the membrane is attached to the top
of the nanoantennas, while some part of the cell mem-
brane is suspended above the nanoantennas. This sus-
pension space will be filled with cell culture medium.
Therefore, cell metabolism and mitosis will keep
exchanging nutrition across the cell membrane.

Data analysis
As demonstrated in Fig. 4, we use the NGK machine

learning algorithm to analyze the Raman spectral data.
NGK nonparametrically models unknown interaction
terms among high-dimensional variables. To achieve the
biostatic analysis of high-dimensional SERS signals of cells,
we developed an NGK classifier by connecting a kernel
machine with the multivariate nonparametric regression
model50. This kernel-based approach can automatically
model unknown and complicated interactions, which
provides flexibility for both parametric and nonparametric
models. Furthermore, the flexibility also applies to additive
and nonadditive nonparametric models. If there are no
complicated interactions or nonparametric models, then
this kernel-based model automatically becomes an addi-
tive model or parametric model.
Consider n intensities for each cell type t, t= 1, …,T,

and p represents the wave/peak variables data set (y,Xt),
where Xt= [x1t, x2t, …, xpt], xjt= [xj1t, xj2t, …, xjnt]

T is a
n×1 vector for the jth variable, and j= 1, …,p. In our
study, the range of the Raman shifts of interest was n=
104, T= 5, and p= 842. According to the representer
theorem, the nonparametric regression model can be
expressed as

Pr y ¼ tjXtð Þ ¼ H f Xtð Þ½ � ¼ H Kαð Þ

where f (Xt) is the unknown nonparametric function, K is
the kernel matrix corresponding to the function Hilbert
space, and α is an unknown parameter. Our kernel can be
expressed in a nonlinear function form because the Gram
matrix

K ξ;Xtð Þ ¼ g
Xp

j¼1

ξ jD
j

 !

where g is a known function (i.e., Gaussian form) and Dj is
the matrix with the (k,l)th entry

dj
kl ¼ � xjk � xjl

� �2
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The objective function for NGK is to estimate f (Xt),
which is in the Hilbert space, for minimizing the objective
function,

log
YT

t¼1

H Kα ξð Þ½ �t
 !

The prediction accuracy between two different cell
types was calculated using 10-fold cross validations, which
means that we had 10 training and 10 test sets. Then, we
built the classifier f (Xt) and calculated the prediction
accuracy using the test set. This procedure was repeated
10 times to obtain the prediction value between two
groups of data. The prediction value between two cell
lines represents the accuracy of this machine learning
algorithm to distinguish different cell types.
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