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Abstract
As we have easier access to massive data sets, functional analyses have gained
more interest. However, such data sets often contain large heterogeneities,
noises, and dimensionalities. When generalizing the analyses from vectors to
functions, classical methods might not work directly. This paper considers noisy
information reduction in functional analyses from two perspectives: functional
clustering to group similar observations and thus reduce the sample size and
functional variable selection to reduce the dimensionality. The complicated data
structures and relations can be easily modeled by a Bayesian hierarchical model
due to its flexibility. Hence, this paper proposes a nonparametric Bayesian func-
tional clustering and peak point selection method via weighted Dirichlet process
mixture (WDPM) modeling that automatically clusters and provides accurate
estimations, together with conditional Laplace prior, which is a conjugate vari-
able selection prior. The proposed method is named WDPM-VS for short, and is
able to simultaneously perform the following tasks: (1) Automatic cluster with-
out specifying the number of clusters or cluster centers beforehand; (2) Cluster
for heterogeneously behaved functions; (3) Select vibrational peak points; and
(4) Reduce noisy information from the two perspectives: sample size and dimen-
sionality. The method will greatly outperform its comparison methods in root
mean squared errors. Based on this proposed method, we are able to identify
biological factors that can explain the breast cancer racial disparities.
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1 INTRODUCTION

Functional analyses have gained more interest as we
have easier access to massive data sets. However, such

data sets often contain large heterogeneities, noises, and
dimensionalities. When generalizing the analyses from
vectors to functions, classical methods might not work
directly. Thus, noisy information reduction is necessary.
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It is typical to consider the noisy information reduction
in functional analyses from two perspectives: functional
clustering to group similar observations and thus reduce
the sample size, as well as functional variable selection to
reduce the dimensionality.

It is known that cluster analyses group objects into
several clusters such that the objects from the same clus-
ter are more homogeneous than objects from other clus-
ters are. The center of each cluster can represent all the
objects within the cluster. As a result, the sample size can
be reduced to the number of clusters. Functional clus-
ter analysis is a generalization of point clustering in that
the objects are functions. After performing the functional
clustering, one only needs to analyze the cluster centers
instead of analyzing the original massive heterogeneous
functions, which greatly reduces the amount of noise
information. Traditional frequentist clustering methods,
such as agglomerative hierarchical clustering or k-means,
require the number of clusters or positions of cluster
centers to be known in advance, which is quite difficult
in reality. Furthermore, these methods are not easy to
generalize to functional clustering because the definition
of similarity measure, such as distance between func-
tions, is not apparent, while traditional cluster analyses
highly depend on the similarity metrics. On the contrary,
model-based clustering methods, such as finite mixture
models, relax the requirements of knowing the number of
clusters beforehand by considering it a latent variable [1].
They also allow us to provide statistical inference. How-
ever, this requires the prior distribution assumptions. Due
to the lack of definition for distribution on functions, as
well as the potential of misspecification, a nonparamet-
ric model-based clustering method is favored, such as a
Dirichlet process mixture (DPM) model [2–5] in Bayesian
approach.

This DPM model was proposed by Ferguson [6] and is
widely applied [3, 7, 8] due to the property that it automat-
ically clusters. The new observation will be assigned to an
existing cluster or a new one, depending on different prob-
abilities. The probabilities of assigning to existing clusters
depend on the cluster size, while the probability of assign-
ing to a new cluster depends on a precision parameter. As
a result, the larger the number of observations in one clus-
ter, the more probable the new observation will be assigned
to this cluster. These properties can be easily interpreted
by the Pólya urn representation [2, 4, 5]. As a result, the
DPM model does not require the assumption of the num-
ber of clusters beforehand. Furthermore, the DPM model
requires no distribution family specified as prior, and thus
allows for more flexibilities. However, it still requires the
assumption of homogeneity. That is, all the observations
should share the same prior distribution. Moreover, the
clustering results have their own characteristic; that is, the

more observations in one cluster, the higher chance that
a new observation will be assigned there, but do not take
information from data. To further relax the homogeneity
assumption and take more advantage of data, a weighted
Dirichlet process mixture (WDPM) prior is considered.
The WDPM was enlightened by Zellner [9] and applied
by Dunson et al. [10]. Instead of assuming all observa-
tions share the same prior distribution, as in the DPM, the
WDPM allows for multiple candidate prior distributions.
Each observation is assigned to one prior distribution with
some weight. Thus, the WDPM prior can be seen as a
weighted mixture of several DPM priors. The construction
of the weight functions can take usage of data information.
Dunson et al. [10] proposed a Gaussian-type weight func-
tion that depends on the Euclidean distances. Sun et al.
[11] further proposed some modifications to those weight
functions.

The weighted Dirichlet process (WDP) structure is a
special case of the dependent Dirichlet process (DDP)
[5, 12, 13], which models the dependency among mul-
tiple Dirichlet processes. Müller et al. [14] considered a
weighted average between two independent Dirichlet pro-
cesses, while the WDP allows for multiple processes. There
are other well-known methods accounting for different
data structures, such as hierarchical structure (HDP) [15]
and nested structure (nested DP) [16, 17]. However, our
focus is on observations of the same levels. As a result,
in this paper, we will only concentrate on the WDP struc-
ture. The existing literature studying the WDP mixture
(WDPM) models did not focus on functional cluster anal-
yses. Dunson et al. [10] concentrated on density estima-
tions, while Sun et al. [18] applied the WDPM to the error
distribution rather than the mean functions. In this paper,
we propose a functional clustering method using WDPM.
The number of possible candidate priors is also carefully
examined. Performances are compared to the traditional
DPM priors. Simulation results show that the WDPM will
always outperform the DPM priors in terms of root mean
squared error (RMSE) on estimated response values. Fur-
thermore, the RMSE will vary by the number of possible
candidate priors. More details are explained in Section 3.

Apart from clustering methods, in functional cluster
analyses, it is also important to identify peak points on
the trends of the cluster functions because they can quan-
tify the unique characteristics among clusters. One pos-
sible approach for peak point selection is to apply the
variable selection techniques to the potential changing
points. The least absolute shrinkage and selection operator
(LASSO) [19] is among the most commonly used methods
for variable selection, especially for linear models. Thus,
we would like to consider Bayesian LASSO, combined
with the WDPM prior to perform functional clustering
and change point selection simultaneously. Tibshirani [19]
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proposed a Bayesian version of LASSO as the maximum a
posteriori (MAP) estimate from an independent and iden-
tical Laplace (double-exponential) prior. Park and Casella
[20] further proposed a conditional Laplace prior that can
be extended to a hierarchical conjugate prior, such that the
posteriors can be achieved using Gibbs samplers.

In this paper, we want to propose a method that unites
both the WDPM and conditional Laplace priors, so that
it can perform functional clustering and peak point selec-
tion at the same time. To the best of our knowledge, there
is no literature studying functional clustering through
the WDPM method and perform peak point selection
simultaneously. We call our method WDPM-VS, which
stands for the combination of WDPM and variable selec-
tion. Our comparison method using the DPM prior is
similarly called DPM-VS. The performance of our pro-
posed WDPM-VS method is evaluated and compared to
DPM-VS method through simulation studies. We will then
apply our proposed WDPM-VS method to study breast
cancer racial disparities using surface-enhanced Raman
spectroscopy (SERS) data, and compare the results with
DPM-VS method.

Our main contributions proposing the WDPM-VS
method lie in several aspects. To begin with, this method
will perform automatic functional clustering and peak
point selection at the same time. In this way, we can simul-
taneously reduce the noise information in functional data
analyses from the two perspectives mentioned previously:
reduce the sample size and reduce the dimensionality.
Thus, this method is beneficial to study SERS data, as this
kind of data typically will have intraclass heterogeneities
within massive curves. Our proposed method is able to
reduce the mass and group the heterogeneities by func-
tional clustering. Concurrently, our method will let the
characteristics for each cluster stand out by peak point
selection. The selected peak points are useful to iden-
tify biological factors explaining the racial disparities. We
will elaborate the real data analysis in Section 4. Besides
extracting key information from the massive heterogeneity
curves with only one model, our proposed method is also
shown to outperform the comparison methods, especially
with heterogeneity data, through simulation studies.

The above mentioned advantages of our method
depend heavily on the Bayesian approach due to various
reasons. First, the complicated data structures and rela-
tions can be easily modeled by a Bayesian hierarchical
model, or developed from a more generic one by chang-
ing the prior distributions. That is why we can perform
noisy information reduction from the two perspectives
through only one model. Second, our proposed method is
built from the nonparametric Bayesian method Dirichlet
process. This method will cluster automatically without
specifying the number of clusters or the cluster centers

beforehand. Moreover, there is no distribution assump-
tions required. Thus, it is easy to generate to functional
clustering. The flexibility of Bayesian approach not only
provides us a superior method to perform functional clus-
tering, but also makes it possible to perform multiple tasks
at the same time. Hence, this paper focuses on the devel-
opment of Bayesian approaches for functional analyses.

This paper is organized as follows: in Section 2, we first
explain the functional clustering with the WDPM prior.
Then we propose our WDPM-VS prior with nonparamet-
ric modeling to perform functional clustering and peak
point selection at the same time. Simulation studies are
conducted to evaluate the performances of our proposed
method in Section 3. In Section 4, we study the breast can-
cer racial disparities with our WDPM-VS method. Lastly,
our concluding remarks are presented in Section 5.

2 NONPARAMETRIC BAYESIAN
METHOD

2.1 Functional clustering using WDPM

Consider an unknown relationship:

yij = fi
(
Xij

)
+ 𝜀ij, i = 1, 2, · · · ,n, 𝑗 = 1, 2, · · · ,ni,

where yij is a continuous response variable changing over
observation 𝑗 (𝑗 = 1, … ,ni) from subject i (i = 1, … ,n);
ni is the total number of observations for subject i, and
there are total n subjects; Xij contains all the p predictor
variables at the jth observation from the ith subject; p rep-
resents the total number of covariates; fi(⋅) is an unknown
function of predictor Xs for subject i; and 𝜀ij ∼ N

(
0, 𝜎2) is

the error term for observation 𝑗 from subject i.
The unknown function fi(⋅) can be estimated using a

Bayesian approach by considering a prior

fi(⋅) ∣ F ∼ F.

F does not need to be a known distribution family;
rather, it can be an unknown distribution with special
characteristics. For example, we could let F have DPM or
WDPM priors to perform functional clustering. A DPM
prior has two parameters: a precision parameter 𝛼, which
controls the total number of clusters, and a base distribu-
tion F0, which determines the characteristics of the model.
Thus, we can write

fi ∣ F ∼ F,F ∼ DP(𝛼,F0),

if we let F have the DPM prior. A WDPM prior can be
seen as a mixture of Q DPM priors. If we define Zi as the
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indicator of the candidate prior for observation i, then

Zi ∼ multinomial(1, 2, · · · ,Q;bi),

where bi =
{

bi1, bi2, · · · , biQ
}

are the weight functions
of assigning observation i to candidate q, q = 1, 2, · · · ,Q.
Observations assigned to the same candidate q will share
the same DPM prior DPq, that is,

fi ∣
(

F1, · · · ,FQ
)
,Zi = q ∼ Fq,Fq ∼ DPq(𝛼,F0),

q = 1, · · · ,Q.

To avoid over-heterogeneity, the Dirichlet processes do
not need to be distinguishable. The distinct unknown pri-
ors Fq already control the differences. Thus, we consider
the prior setting as

fi ∣
(

F1, · · · ,FQ
)
,Zi = q ∼ Fq,Fq ∼ DP(𝛼,F0), q = 1, · · · ,Q.

The probabilities for latent variable Zi, i = 1, 2, · · · ,n
are determined by the weight functions bi, i = 1, 2, · · · ,n.
Dunson et al. [10] suggested using

biq =
𝛾qe−𝜓

‖‖‖Xi−Xc
q
‖‖‖

2

∑Q
l=1𝛾le−𝜓‖Xi−Xc

l‖
2 , q = 1, 2, · · · ,Q,

with total number of candidates Q = n, the sample size.
Here, Xc

q represents the center value of Xi s from candidate
q. However, Sun et al. [11] pointed out that there would be
identifiable problems between the hyperparameters 𝜓 and
𝛾 , so they simplified it to an efficient version

biq =
e−𝜓

‖‖‖Xi−Xc
q
‖‖‖

2

∑Q
l=1e−𝜓‖Xi−Xc

l‖
2 , q = 1, 2, · · · ,Q.

To add the variability on different candidates, they also
considered a more flexible version

biq =
e−𝜓q

‖‖‖Xi−Xc
q
‖‖‖

2

∑Q
l=1e−𝜓l‖Xi−Xc

l‖
2 , q = 1, 2, · · · ,Q.

This weight function might have an overlapping effect
with selecting the total number of candidates Q. Imagine
an extreme case in which 𝜓q is extremely large for can-
didate q, then the probability biq will become negligible.
That is equivalent to dropping candidate q and reducing
the number of Q. As a result, we will focus on the efficient
weight function that treats all 𝜓q as the same and examine
the performance based on the number of Q.

2.2 Nonparametric function estimation

To model the unknown function fi(⋅), we consider an
sth-order regression spline. The regression spline is com-
monly used as a nonparametric approach with fewer
parameters, especially compared to wavelet bases. It is also
useful for easy interpretations. The locations of bases are
determined by the data, so the selection of bases num-
bers and bases locations can be interpreted by the data as
well. In this paper, we use bases selection to perform peak
point selection. The unknown function fi

(
Xij

)
for the 𝑗

th

observation from the ith subject can be modeled by

fi
(
Xij

)
= 𝛽0i + 𝛽1iXij + · · · + 𝛽siXs

ij +
K∑

k=1
𝛽s+k,i

(
Xij − 𝝃k

)s
+,

where K is the total number of knots and 𝝃k is the posi-
tion of knot k. The function

(
Xij − 𝝃k

)s
+ equals

(
Xij − 𝝃k

)s

if Xij − 𝝃k ⩾ 0, and equals 0 otherwise.
If we define

X(p)
ij =

(
1 Xij · · · Xs

ij

)
,

𝜷
(p)
i =

(
𝛽0i 𝛽1i · · · 𝛽si

)′
,

X(np)
ij =

{(
Xij − 𝝃1

)s
+

(
Xij − 𝝃2

)s
+ · · ·

(
Xij − 𝝃K

)s
+

}
,

and
𝜷
(np)
i =

(
𝛽s+1,i 𝛽s+2,i · · · 𝛽s+K,i

)′
,

then the unknown function fi
(
Xij

)
can be written as

fi
(
Xij

)
= X(p)

ij 𝜷
(p)
i + X(np)

ij 𝜷
(np)
i .

We call X(p)
ij and 𝜷 (p)i the parametric component, while

X(np)
ij and 𝜷

(np)
i are the nonparametric component. The

parametric component relates to polynomial basis func-
tions, which can describe the global behaviors, while the
nonparametric component relates to truncated basis func-
tions, which can capture the local behaviors. With this
formatting, the nonparametric model can be written as

yij = X(p)
ij 𝜷

(p)
i + X(np)

ij 𝜷
(np)
i + 𝜀ij, i = 1, 2, · · · ,n,

𝑗 = 1, 2, · · · ,ni,

and the likelihood function is

L =
(
2𝜋𝜎2)−

∑n
i=1ni∕2

exp

{

− 1
2𝜎2

n∑

i=1

ni∑

𝑗=1

(
yij − x(p)ij 𝜷

(p)
i − x(np)

ij 𝜷
(np)
i

)2
}

,
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where ni is the number of observations for subject i and
there are n total subjects.

2.3 Vibrational peak selection

With the introduction of parameter 𝜷 from the regres-
sion spline, we can project the priors for fi to the priors

for 𝜷 i =
{(

𝜷
(p)
i

)′ (
𝜷
(np)
i

)′}′

. To distinguish the prior

for functions from prior for vectors, we write the pri-
ors as 𝜷 i ∣ G0 ∼ G0 for the parametric Bayesian setting;
𝜷 i ∣ G ∼ G,G ∼ DP(𝛼,G0) for the DPM setting; and 𝜷 i ∣(

G1, · · · ,GQ
)
,Zi = q ∼ Gq,Gq ∼ DP(𝛼,G0), q = 1, · · · ,Q,

for the WDPM setting.
By projection to priors on 𝜷, selection on the para-

metric portion 𝜷 (p) s helps determine the shape of the
unknown function f , while selection on the nonparamet-
ric portion 𝜷(np) s indicates the important changing points.
Both are useful to explain the unknown behavior f . Thus,
we consider bases selection on both parametric and non-
parametric components as peak point selection, which is
equivalent to variable selection on all parameters 𝜷. To per-
form the variable selection, we can set G0 to a conditional
Laplace distribution for conjugacy [20] with probability
density

p
(
𝜷 i|𝜎

2) =
s+K∏

d=0

𝜆i

2
√
𝜎

2
e−𝜆i∣𝛽i,d∣∕

√
𝜎

2
,

where 𝜎
2 is the common variance for the model errors.

It is essential to condition on the 𝜎
2 because it assures

a unimodal posterior. With this conditional Laplace
prior, we can derive an equivalent set of hierarchi-
cal conjugate priors by introducing a set of parameters{
𝜏

2
i,0, 𝜏

2
i,1, 𝜏

2
i,2, · · · , 𝜏

2
i,s+K

}
with the same dimension as 𝜷 i:

𝜷 i ∣ 𝜎2
,

{
𝜏

2
i,0, 𝜏

2
i,1, 𝜏

2
i,2, · · · , 𝜏

2
i,s+K

}

∼ N
{

0, 𝜎2∗diag
(
𝜏

2
i,0, 𝜏

2
i,1, 𝜏

2
i,2, · · · , 𝜏

2
i,s+K

)}
,

𝜏
2
i,d, d = 0,1,2, · · · , s ∼ Exponential

{
𝜆

2,(p)
i
2

}
,

𝜏
2
i,d, d = s + 1, · · · , s + K ∼ Exponential

{
𝜆

2,(np)
i
2

}
.

(1)

The hyperparameter 𝜆i is set to be different for the
parametric and nonparametric components, and labeled
𝜆
(p)
i and 𝜆

(np)
i . This is because the nonparametric com-

ponent for 𝜷 i controls the local behaviors and needs
a smoothing parameter. Thus,

{
𝜏

2
i,s+1, · · · , 𝜏

2
i,s+K

}
, corre-

sponding to the nonparametric parameters, need to sep-
arate out from

{
𝜏

2
i,0, 𝜏

2
i,1, · · · , 𝜏

2
i,s

}
, corresponding to the

parametric component. 𝜆2
i ∕2 is the rate parameter for the

exponential distribution. Additionally, if we integrate out
the parameters 𝝉 i, we will achieve the original conditional
Laplace prior.

If we set G0 according to (1), we will obtain the para-
metric Bayesian prior. We are setting different priors for
each observation i; thus, the model is fitted separately over
observations and will lose the generality of the whole data
set. However, examining the overall relationship is our
top priority, though it eliminates individual differentia-
tions. Therefore, we set all 𝜷 i s as the same and only fit a
united relationship for the whole data set. The paramet-
ric Bayesian prior cannot perform functional clustering, so
that we will focus on the DPM and WDPM priors. Yet, the
nonparametric Bayesian priors are also comparable to the
parametric Bayesian priors if we set the base distribution
G0 as (1).

The hyperparameter 𝜆i, either parametric or nonpara-
metric, is also considered to vary by observation. This is
the penalty parameter in frequentist LASSO, and it might
behave differently for observations from different groups.
According to Park and Casella [20], the squared value 𝜆

2
i

can have a conjugate prior as

𝜆
2
i ∼ Gamma(r, 𝛿),

where r is the shape parameter and 𝛿 is the rate parameter.
The common variance 𝜎2 has its conjugacy with an inverse
gamma prior (shape parameter a and rate parameter b):

𝜎
2 ∼ IG(a, b).

As a result, our proposed WDPM-VS method has the
prior as

𝛽i =
((

𝛽
(p)
i

)′ (
𝛽
(np)
i

)′
)′

,

𝛽i ∣
(

G1, · · · ,GQ
)
,Zi = q ∼ Gq, q = 1, · · · ,Q,

Zi ∣ bi ∼ multinomial
[
1, · · · ,Q;bi

]
,

Gq ∼ DP(𝛼,G0),G0 ≡ conditional Laplace
(
𝜎

2
, 𝜆i

)
,

which is equivalent to

𝛽i ∣ 𝜎2
,

{
𝜏

2
i,0, 𝜏

2
i,1, · · · , 𝜏

2
i,s+K

}
∼ N

{
0, 𝜎2 ∗ diag

(
𝜏

2
i,0, 𝜏

2
i,1, 𝜏

2
i,2, · · · , 𝜏

2
i,s+K

)}
,

𝜏
2
i,d, d = 0, 1, 2, · · · , s ∼ Exponential

{
𝜆

2,(p)
i
2

}
,

𝜏
2
i,d, d = s + 1, · · · , s + K ∼ Exponential

{
𝜆

2,(np)
i
2

}
,

𝜎
2 ∼ IG(a, b),

𝜆
2
i ∼ Gamma(r, 𝛿). (2)

Due to conjugacy and computing efficiency, we use
grid search to select the hyperparameters 𝛼 (precision
parameter from Dirichlet process) and 𝜓 (hyperparameter
in the weight function b). The other priors from (2) are all
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conjugate, so a Gibbs sampling algorithm can be applied to
solve for the posteriors. Detailed procedures are summa-
rized in Appendix A.

3 SIMULATION

We examined the performances of our proposed method
through simulation studies in three different scenarios.
In the first two simulation settings, we investigated the
performance of functional clustering using WDPM when
three different functions are generated. In the thrid sim-
ulation setting, we investigated the performance of func-
tional clustering and peak point selection together from
WDPM-VS method. The number of possible candidate
priors Q is also studied through the simulations.

Our proposed WDPM and WDPM-VS method are com-
pared to the parametric Bayesian prior, DPM, and DPM-VS
prior with G0 set as Equations (1). Root mean squared
errors (RMSEs) calculated between estimated (̂yij) and true
(yij) response values, defined as

RMSE =

√√√√√
∑n

i=1
∑ni

𝑗=1

{(
yij − ŷij

)2
}

∑n
i=1ni

,

are used as comparison criteria, where ŷij are calculated via
different methods. The number of possible candidates Q is
also examined through the simulations.

3.1 Simulation settings

Consider nonparametric model:

yij = fi
(

xij
)
+ 𝜀ij, 𝑗 = 1, 2, · · · ,ni, i = 1, 2, · · · ,n,

where xij ∼ Unif(−2, 2), 𝜀ij ∼ N(0,0.01) and n = 50. That is,
for each subject i, there are ni locations to form the func-
tion. The nonparametric function fi(x) s are considered
differently in two settings.

3.1.1 Setting 1

Consider ni = 20. The mean function fi(x) s are gener-
ated from three groups, containing both parametric and
nonparametric functions:

fi(x) =
⎧
⎪
⎨
⎪
⎩

cos(𝜋x) if i = 1, 2, · · · , 17,
x2 if i = 18, 19, · · · , 34,
x if i = 35, 36, · · · , 50.

All three groups have nearly the same sizes, so this
is a balanced scenario. Performances on both linear and
nonlinear models are examined.

3.1.2 Setting 2

Consider ni = 20. The mean function fi(x) s are written as

fi(x) = 𝛽i1x + 𝛽i2x2 + 𝛽i3(x − 𝜉1)2+
+ 𝛽i4(x − 𝜉2)2+ + 𝛽i5(x − 𝜉3)2+,

where the parameters 𝜷 i follow from the WDP distribu-
tion. An unbalanced scenario is considered. We set two
candidate priors so that the first quarter of observations is
generated from the same Dirichlet process, while the rest
are generated from another Dirichlet process. That is,

𝜷 i =

{
DP1

(
𝛼1,G0,1

)
if i = 1, 2, · · · , 12,

DP2
(
𝛼2,G0,2

)
if i = 13, 14, · · · , 50.

We considered that DP1 and DP2 share the same
parameters to avoid over-heterogeneity, that is, 𝛼1 =
𝛼2 = 2, and

G0,1 = G0,2 = N

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

0,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎
2
p = 25 0 0 0 0

0 𝜎
2
p = 25 0 0 0

0 0 𝜎
2
np = 5 0 0

0 0 0 𝜎
2
np = 5 0

0 0 0 0 𝜎
2
np = 5

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

.

In this setting, we examine nonparametric mean func-
tions with heterogeneous data.

3.1.3 Setting 3

Consider ni = 100. We generate the unknown function
fi equally from three groups, containing both parametric
and nonparametric functions, where the nonparametric
function contains unequal changing points:

fi(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

6
10
𝛽30,17

{
x−min(x)

max(x)−min(x)

}
+ 4

10
𝛽3,11

{
x−min(x)

max(x)−min(x)

}
if i = 1, 2, · · · , 17,

x2 if i = 18, 19, · · · , 34,

0.5x if i = 35, 36, · · · , 50,

where 𝛽a,b(x) is the density function of a beta distribution
with parameters a and b. The first function is modified
from Wang and Wahba [21] and Montoya et al. [22]. This
is a function with unequal changing points.
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GAO et al. 7 of 14

3.2 Simulation results

3.2.1 Setting 1

Setting 1 generates data from a balanced case and fits the
model using WDPM method. Although the data are homo-
geneous, the WDPM prior still outperforms the DPM prior.
Results are summarized in Figure 1, and Table A.1.1, with
comparisons among various methods and the raw data.

Figure 1D demonstrates results from the WDPM prior
with 50 candidates. The number 50 is selected based on
the RMSEs from a number of candidates from 1 to 50.
We found that the WDPM fitting can capture the charac-
teristics of the raw data very well. It greatly outperforms
the parametric Bayesian approach, illustrated in Figure 1B,
and the DPM fitting, shown in Figure 1C. Although the
data are homogeneous, the DPM prior still cannot sepa-
rate the groups well. It requires a large precision parameter
value to further separate the subjects, while the WDPM
can control the separation through different candidates.
The plot for run time (in hours) is also summarized in
Figure A.1.1.

3.2.2 Setting 2

We examine an unbalanced scenario for the WDPM
method. Data possess more heterogeneities, while WDPM
still captures the data structure well and beats the DPM
prior and parametric Bayesian prior. Compared to Set-
ting 1, our proposed method with the WDPM prior beats
the comparison methods more in terms of the RMSEs
as shown in Figure 2. This result supports that, when
data are more heterogeneous, our proposed method per-
formed much better than traditional approaches. Detailed
results from setting 2 are shown in Table A.1.2. The
plot for run time (in hours) is also summarized in
Figure A.1.2.

3.2.3 Setting 3

The performance of the WDPM-VS method is compared
to the parametric Bayesian prior and DPM-VS prior with
different candidate number Q through 50 simulations. As
suggested by Ruppert et al. [23], we selected total number
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F I G U R E 1 Results from Simulation Setting 1: WDPM Model with Balanced Data. Figures Show the Raw Data (A) and the Fitted
Functional Estimates Using Parametric Bayesian Approach (B) prior (C), and WDPM prior with 50 Candidate Priors (D). (E) Shows the
Boxplot of RMSEs Through 50 Simulations From Different Methods: Parametric Bayesian Prior (PB), DPM Prior (DP) and WDPM Prior with
Candidate Q (Q+Number). Boxes to the Right of the Red Dashed Line Are Results From WDPM. (F) Examines the Best Q Selected Based on
RMSEs Through 50 Simulations.
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F I G U R E 2 Results from Simulation Setting 2: WDPM Model with Unbalanced Data. Figures Show the Raw Data (A) and the Fitted
Functional Estimates Using Parametric Bayesian Approach (B) prior (C), and WDPM prior with 2 Candidate Priors (D). (E) Shows the
Boxplot of RMSEs Through 50 Simulations From Different Methods: Parametric Bayesian Prior (PB), DPM Prior (DP) and WDPM Prior with
Candidate Q (Q+Number). Boxes to the Right of the Red Dashed Line Are Results From WDPM. (F) Examines the Best Q Selected Based on
RMSEs Through 50 Simulations.

of knots K as

K = min
(number of unique xij

4
, 35

)
,

and each knot location 𝜉k as

𝜉k =
(

k + 1
K + 2

)
th sample quantile of the unique xij.

Results are summarized in Figure 3, Table A.1.3, with
comparisons among various methods and the raw data.
Figure 3D demonstrates results from the WDPM prior with
39 candidates. The number 39 is selected based on the
RMSEs from a number of candidates from 1 to 50. We
found that the WDPM fitting has comparable results to the
truth (Figure 3A), and it greatly outperforms the paramet-
ric Bayesian (Figure 3B) and DPM-VS (Figure 3C) priors.
The plot for run time (in hours) is also summarized in
Figure 4.

3.3 Investigations on number
of potential candidates

The number of possible candidate priors Q plays an essen-
tial role with the WDPM-VS prior. We investigated the
performance of Q by RMSEs and selected the Q with the
smallest RMSE as our final WDPM-VS model. Comparison
results among candidate numbers 1 to 50 through box-
plots and histograms from the 50 simulations are shown in
Figure 3E,F, as well as Tables A.1.1–A.1.3.

The DPM-VS prior has a similar RMSE to the
WDPM-VS prior when Q = 1. This is because WDPM is
actually a mixture of DPM priors. When Q = 1, there is
only one DPM prior, so it is equivalent to having the tra-
ditional DPM prior. As Q increases, the RMSEs and their
variances decrease in general. They usually have smaller
values than the parametric Bayesian prior. However, when
Q is extremely large (over 42), the RMSE values and their
variances grow rapidly and can be even larger than that of
the parametric prior. Thus, we prepared a zoomed boxplot
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F I G U R E 3 Results from Simulation Setting 3: WDPM-VS Model with Balanced Data. Figures Show the Raw Data (A) and the Fitted
Functional Estimates Using Parametric Bayesian Approach (B), DPM-VS prior (C), and WDPM-VS prior with 39 Candidates (D). (E) Shows
the Boxplot of RMSEs Through 50 Simulations From Different Methods: Parametric Bayesian Prior (PB), DPM-VS Prior (DP) And WDPM-VS
Prior with Candidate Q (Q+Number). Boxes to the Right of the Red Dashed Line Are Results From WDPM. The Plot Above is the Original
Boxplot while the Plot Below Zoomed to RMSEs Lower Than 1.5. (F) Examines the Best Q Selected Based on RMSEs Through 50 Simulations.
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F I G U R E 4 Timing Results from Simulation Setting 3:
WDPM-VS Model with Balanced Data. Boxplot of Computation
Time in Hours Through 50 Simulations From Different Methods:
Parametric Bayesian Prior (PB), DPM Prior (DP) And WDPM Prior
with Candidate Q (Q+Number). Boxes to the Right of the Red
Dashed Line Are Results From WDPM.

of the RMSEs, ranging from 0 to 1.5 (Figure 3E), to com-
pare the majority models with lower RMSE values. For the
majority of the Q values, the WDPM-VS model has smaller
RMSE values with larger Q, which are smaller than those
from the DPM-VS and parametric priors.

Although the RMSEs generally decrease with the
increase of the number Q, the decreasing rate keeps reduc-
ing. This result implies that although a larger Q value is
better, a relatively large Q may already be optimal. When
taking account of computing time shown in Figure 3 as
well as Figures A.1.1–A.1.2, a relatively large Q will be
more optimal than the largest Q.

4 BREAST CANCER RACIAL
DISPARITIES USING
SURFACE-ENHANCED RAMAN
SPECTROSCOPY

We applied our proposed method to a real data applica-
tion, where we examined the WDPM-VS approach through
the surface-enhanced Raman spectroscopy (SERS) data to
study breast cancer racial disparities. Results show that our
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10 of 14 GAO et al.

proposed method outperforms the comparison DPM-VS
method. Through the analysis results using our proposed
model, we are able to identify the important biological
factors affecting racial disparities.

4.1 Motivation and data description

Breast cancer is the second most common cancer and
the leading cause of cancer death in American women
[24]. The National Institutes of Health (NIH) shows that
different incidence and mortality rates for breast can-
cer exist among various racial populations. For example,
Caucasian women are more likely to develop breast can-
cer than African American women are [25]. Recent lit-
erature has shown that biological factors might heavily
affect racial disparities [26]. Studies on the biological fac-
tors thus have been rapidly developed with advanced
nanotechnologies, such as SERS [27, 28]. The label-free
SERS approach can directly measure the biomolecular
fingerprint information from living cells in a real-time

and non-destructive manner, so that sample preparation
and chemical modifications can be significantly omitted
[28–30]. A new cost-effective SERS device which consists
of 3D arrays of nanolaminate nanoantennas with high
sensitivity and good uniformity has been developed by
the Nano-enabled Photonics-Electronics Devices and Sys-
tems (NePEDS) lab from Virginia Tech [31]. Extracellular
SERS signals from living breast cells were measured by
this practical high-performance SERS device with an inti-
mate analyses on classification between cancer and nor-
mal groups have already been studied by the lab. However,
classification among racial groups has been challenging.
The flowchart of how to collect label-free living cell spec-
troscopic data from this SERS device with the proposed
statistical analysis is shown in Figure 5A. The measured
SERS spectra via molecular profiling can be shown in
curves of Raman signal intensities versus wavenumbers as
shown in Figure 5B.

The wavenumber, determined by the energy of a
molecular vibrational mode, has a one-to-one match and
can be used as the biomolecular fingerprint information
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F I G U R E 5 Nanolamined SERS device and signal functions: (A) Using high-performance nanolaminated SERS device, collect
molecule profiling of label-free living breast cancer and normal cells, and conduct WDPM-VS for functional clustering among racial
disparities groups and simultaneously select vibrational molecular fingerprint associated to cancer racial disparities; (B) Signal Intensities
Versus Raman Wavenumbers by Racial Populations: Breast Normal Women, Breast Cancer Patients for African American Women and Breast
Cancer Patients for Caucasian Women, Along with Combined Populations.
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to explain the cause of racial disparities. Hence, we want
to identify the wavenumbers that have different behav-
iors in the intensities for racial groups. However, the large
intraclass variations due to cellular and additional can-
cerous heterogeneity add difficulties to compare across
racial groups, because the noise information might pro-
duce overlaps across groups. Therefore, it is desirable
to reduce the amount of noise information and make
each group distinguishable. The noises exist in two direc-
tions: a large number of heterogeneously behaved signal
curves, as well as the massive peak points on the curves.
Therefore, we apply our proposed WDPM-VS method
to reduce the massive noisy information within each
racial group.

Three different racial groups were considered: women
without breast cancer, Caucasian women with breast can-
cer, and African American women with breast cancer. The
Raman signals were all measured with wavenumbers from
400 to 1800. The sample sizes for the three groups were not
the same. We measured 85 cells for Caucasian women, 78
for African American women, and 95 for women without
breast cancer. Figure 5B shows the original data by each
racial group, as well as a combination of the three groups.
It is clear that the three racial groups behave differently.
However, it is difficult to identify the differences from the
overlapping plot.

4.2 Analyses and results

Figure 6 shows the fitted results using both DPM-VS and
WDPM-VS priors. The DPM-VS prior has only one cluster
for each racial group, while the WDPM-VS results retain
the variations in the data. It keeps the intraclass hetero-
geneities, and thus is preferred. The RMSEs of WDPM-VS
are also lower than those of DPM-VS for all racial
groups.

From the fitted plot, we can observe that the nor-
mal group is quite stable, while the patient groups have
more variations. In general, the African American group
has a univariate structure. However, a few clusters show
large variations around wavenumbers 1100–1500 to sep-
arate it from the normal group. On the other hand, the
Caucasian group has large heterogeneities. We further
investigated the parameter estimations. For easy compar-
ison, we scaled each estimated parameter relative to the
largest absolute value from the same observation. If the
absolute value of the scaled parameter was larger than
0.5, we considered it important and selected it. Using
the DPM-VS method, we only selected one parameter
corresponding to the linear basis. Using the WDPM-VS
approach, we also only selected the linear basis for the nor-
mal group and the African American group, but there are
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F I G U R E 6 Results from Real Data Application. Clustering
Results by DPM-VS and WDPM-VS Priors with Nonparametric
Function for Raman Signal Intensities Versus Raman Shifts/
Wavenumbers by Racial Populations: Women Without Breast
Cancer, Breast Cancer Patients for African American Women and
Breast Cancer Patients for Caucasian Women, Along with
Combined Populations.

more selections for the Caucasian group. Among the 85
observations, 79 selected the linear basis and 20 selected
the knot at 1351–1531. If we considered all peaks selected
with at least 10 observations, we found important peak
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12 of 14 GAO et al.

T A B L E 1 Breast cancer racical disparities: wavenumber at selected peaks, possible correlated bioattributions, and their references.

Selected
Wavenumber
(cm−1)

Possible corresponding
attributions Reference

685 Ring breathing mode of guanine Chan et al. [32]

1291 Cytosine Ruiz-Choca et al. [33]

1316 Collagen and lipid, Amide III protein Stone et al. [34], Stone et al. [38]

1422 Deoxyribose Ruiz-Choca et al. [33]

1569 Tryptophan, guanine Stone et al. [34], Lau et al. [35]

1596 Phenylalanine, Amide I protein Chan et al. [32], Sigurdsson et al. [37] Dukor [36]

1620 Tryptophan, Amide I protein Chan et al. [32], Sigurdsson et al. [37] Dukor [36]

locations around wavenumbers 600–700, 1270–1470, and
1550–1750, which contain vibrational molecular finger-
prints associated to cancer racial disparities.

The single and/or combination of peaks act as a fin-
gerprint to identify a racial group. The peaks can be
correlated to possible biochemical attributes, such as the
follows: (1) Ring breath mode of guanien [32] at peak
685, (2) Cytosine [33] at peak 1291, (3) Collagen and lipid,
Amide III protein ([34],0) at peak 1316, (4) Deoxyribose
[33] at peak 1422, (5) Dexoxyribose [34, 35] at peak 1569,
(6) Phenylalanine, Amide I protein [32, 36, 37] at peak
1596, and (7)Tryptophan, Amide I protein [32, 36, 37] at
peak 1620.

Hence, some of these wavenumbers have already been
identified to have corresponding attributions, which are
listed in Table 1. These attributions can be helpful to
explain the biological factors separating the Caucasian
group.

5 DISCUSSION

In this paper, we proposed the WDPM-VS method that
performs functional clustering and peak point selection at
the same time. Our proposed method can simultaneously
perform the following tasks: (1) Automatic cluster with-
out specifying the number of clusters or cluster centers
beforehand; (2) Cluster for heterogeneously behaved func-
tions; (3) Select vibrational peak points; and (4) Reduce
noisy information from the two perspectives: sample size
and dimensionality. Based on simulations, our method
outperforms comparison methods in root mean squared
errors (RMSE). Our method also beats comparisons in
real data application in that it reduces the noise informa-
tion from the two perspectives mentioned above, while
it maintains data structure when identifying critical sig-
nals. We have examined the performance of our proposed
method through simulations and real data applications.

More advanced theoretical justifications are beyond the
scope of this paper, but can be conducted for future work.
These will help explain the rational behind the results in
more general settings.

Estimation results of the WDPM-VS prior depend
highly on the total number of candidates. In general,
the RMSE will decrease with an increase in the number
of candidates, within a reasonable range. However, the
decreasing rate will drop after a certain number. Further
investigations are necessary to find the general relation-
ship between the optimal number of candidates and the
total number of subjects, considering computation effi-
ciency, through various simulation studies and theoretical
proofs. Meanwhile, further studies can work on devel-
oping efficient algorithms to improve the computation
efficiency.

We investigated the breast cancer racial disparities to
compare different racial groups. Due to the large intra-
class heterogeneities, we reduced the noise by clustering
and peak point selections. Results show that people with-
out breast cancer have more stable Raman signal curves,
while breast cancer patients have more variations. Inten-
sities for Caucasian women show important changes at
wavenumbers 600–700, 1270–1470, and 1550–1750. Some
of these wavenumbers have already been identified to
have corresponding attributions, which can be used to
explain the biological factors separating the Caucasian
group. We note that these finds need to be further validated
biologically.
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APPENDIX A

A.1 MCMC SAMPLING PROCEDURE
Our proposed WDPM-VS method can obtain its poste-
rior distributions through Gibbs sampling due to conju-
gacy. Assume we finally arrive at L distinct clusters, with
L(i) as the number of distinct clusters without observa-
tion i. For each cluster l, we have a unique set of val-
ues

{
𝜷∗l , 𝝉

2,∗
l , 𝜆

2,∗
l

}
, which comes from candidate q, and

is labeled Cl = q. Each
{
𝜷∗l , 𝝉

2,∗
l , 𝜆

2,∗
l

}
can be matched to

multiple observations
{
𝜷 i, 𝝉

2
i , 𝜆

2
i

}
with Li = l, where Li

is the cluster label for observation i. Further define n−g
to be the number of observations without observation
i from group g, where g can be a cluster or a candi-
date. Denote D𝜏 = diag

(
𝜏

2
i,0, 𝜏

2
i,1, 𝜏

2
i,2, · · · , 𝜏

2
i,s+K

)
. The pos-

terior distributions for WDPM-VS proceed in the following
steps:

Step H0: Select initial values for L, C, 𝜷, 𝝉 , 𝝀2,
and 𝜎

2;
Step H1: Sample label Li, i = 1, 2, · · · ,n from

l, l = 1, · · · ,L(i)

with probability proportional to

b∗i,Cl
n−l

∗N
(
Xi𝜷 l, 𝜎

2)

𝛼 + n−Cl

,

and from
L(i) + 1

with probability proportional to

𝛼
∗N

(
0, 𝜎2Ip + Xi𝜎

2D𝜏Xi′
)
∗

Q∑

q=1

biq

𝛼 + n−q
;

Step H2: Sample unique 𝜷∗l , l = 1, 2, · · · ,L from

N

{(
∑

i∶Li=l
X′

iXi +D−1
𝜏

)−1
∑

i∶Li=l
X′

i yi, 𝜎
2∗

(
∑

i∶Li=l
X′

iXi +D−1
𝜏

)−1}

;

Step H3: Sample unique 1∕𝝉2,∗
d,l , d = 0,1,2, · · · , s +

K, l = 1, 2, · · · ,L from

Inverse − Gaussian
⎛
⎜
⎜
⎝

√√√√𝜆
2
l
∗
𝜎

2

𝜷2
d,l

, 𝜆
2
l

⎞
⎟
⎟
⎠
,

where 1∕𝝉2,∗
d,l and 𝜆

2
l can be either parametric or nonpara-

metric;
Step H4: Sample unique 𝜆

2
l , l = 1, 2, · · · ,L from

Gamma

(

p + r,

∑s+K
d=0𝜏

2
d,l

2
+ 𝛿

)

;

Step H5: Sample candidate label Cl, l = 1, 2, · · · ,L from

q, q = 1, · · · ,Q

with probability proportional to

∏
i∶Li=l biq

∑Q
m=1

∏
i∶Li=l bim

;

Step H6: Sample common variance 𝜎
2 from

IG

{

a +
(∑n

i=1ni + L∗(s + K + 1)
)

2
, b +

(y − X𝜷)′(y − X𝜷)
2

+
𝜷 ′D

𝜏
𝜷

2

}

.
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