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ABSTRACT: Plasmonic nanostructure-enabled label-free surface-
enhanced Raman spectroscopy (SERS) emerges as a rapid
nondestructive molecular fingerprint characterization technique for
complex biological samples. However, label-free SERS bioanalysis
faces challenges in reliability and reproducibility due to SERS
signals’ high susceptibility to local optical field variations at
plasmonic hotspots, which can bias correlations between the
measured spectroscopic features and the actual molecular concen-
tration profiles of complex biochemical matrices. Herein, we report
that plasmonically enhanced electronic Raman scattering (ERS)
signals from metal nanostructures can serve as a SERS calibration
internal standard to improve multivariate analysis of living biological
systems. Through side-by-side comparisons with noncalibrated
SERS datasets, we demonstrate that the ERS-based SERS calibration
can enhance supervised learning classification of label-free living cell SERS spectra in (1) subtyping breast cancer cells with different
degrees of malignancy and (2) assessing cancer cells’ drug responses at different dosages. Notably, the ERS-based SERS calibration
has the advantages of excellent photostability under laser excitation, no spectral interference with biomolecule Raman signatures, and
no occupation competition with biomolecules at hotspots. Therefore, we envision that the ERS-based SERS calibration can
significantly boost the multivariate analysis performance in label-free SERS measurements of living biological systems and other
complex biochemical matrices.

■ INTRODUCTION

Rapid molecular-level characterization of biological samples is
highly desirable for identifying biomarkers related to specific
diseases and pathogens, characterizing cellular responses in
drug testing, or screening up- or down-regulated pathways but
remains challenging in biology and medicine.1−3 Currently,
mass spectrometry and nuclear magnetic resonance spectros-
copy are the two gold standard methods for providing
quantitative structural information for complex biological
samples.4,5 Nevertheless, these measurements are destructive
and time-consuming, suitable for end-point analysis but not for
real-time monitoring of dynamic changes in living biological
systems. As a promising alternative, surface-enhanced Raman
spectroscopy (SERS) has emerged as a label-free, non-
destructive, and rapid detection technique to provide vibra-
tional molecular fingerprint information of biological samples
without water vibrational interference.1−3,6−8 Notably, by
surface plasmon enhancement of both excitation and inelastic
scattering processes for molecules at plasmonic hotspots, the
sensitivity of SERS can reach a single-molecule detection
limit.9 Molecular-specific and label-free SERS approaches can
allow the detection of specific biomolecules (e.g., metabolites,

amino acids, proteins, and nucleic acids) in complex matrices
(e.g., food, blood plasma, serum specimens, and body
fluids)10−13 as well as the investigation of dynamic biological
processes in living biological systems (e.g., cell cultures, tissues,
and animal models).14−16

For acquiring intrinsic SERS signatures of living cells, two
general forms of SERS-active nanosensors have been
developed: colloidal plasmonic nanoparticles and substrate-
based plasmonic nanostructures.3,6 Colloidal plasmonic nano-
particles, by endocytosis, can enable intracellular SERS
detection and analysis of the cell death process,17 cell
cycle,18 and endolysosomal pathways.19 On the other hand,
substrate-based plasmonic nanostructures can provide uniform
large-area hotspot arrays for extracellular SERS measurements
to classify between cancer and normal cells,20,21 examine
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membrane dynamics with electroporation,22 and monitor
neural stem cell differentiation.23 Since label-free SERS spectra
of living cells typically consist of highly overlapped
spectroscopic features from various biomolecules in hotspot
ensembles within the laser beam area, multivariate analysis of
such high dimensional data is required to extract biologically
meaningful knowledge.3,6,24 Unsupervised learning approaches,
such as principal component analysis (PCA), can evaluate
spectroscopic features’ intrinsic relationships between sample
groups and reduce data dimensionality with preserved key
variances.25 Nevertheless, unsupervised learning algorithms are
descriptive and thus necessitate further interpretation. There-
fore, for interpreting high dimensional SERS spectra of living
cells between different types/subtypes or disease/drug states, it
is crucial to exploit supervised learning methods and perform
multivariate mapping with trained models. Popular supervised
learning algorithms for multivariate SERS bioanalysis include
linear discriminant analysis (LDA), partial least-squares
discriminant analysis (PLS-DA), support vector machines
(SVM), and artificial neural networks (ANN).24,26

Despite significant advances, label-free SERS analysis of
living cells still faces challenges in reliability and reproducibility
mainly because SERS signals are incredibly susceptible to local
optical field variations at plasmonic hotspots. Spatial variations
of SERS signals among different plasmonic hotspots can occur
due to variations in nanoscale geometries, the local refractive
index (RI) of different intracellular and extracellular
components, or optical focusing conditions.27 Temporal
variations of SERS signals can occur because of excitation
laser power fluctuations or dynamic cellular perturbations to
plasmonic hotspots. Such spatial or temporal variations in
SERS signals can mislead interpretation of the actual
biomolecule concentrations at hotspots and bias living cell
SERS analysis. A promising method for calibrating SERS
signals is to generate internal standards from reference tag
molecules incorporated at hotspots,28−31 and the calibrated
SERS signals can more accurately reflect the actual
biomolecule concentration. However, the tag molecule-based
internal standards suffer significant limitations due to (i) poor
photostability under laser excitation, (ii) spectral interference
with Raman signatures of biomolecule matrices, and (iii)
adsorption competition with biomolecules at hotspots,
especially detrimental to chronic living cell measurements
and analysis. To overcome the aforementioned limitations of
tag molecule-based SERS calibration, our group has recently
demonstrated that plasmon-enhanced electronic Raman
scattering (ERS) signals from metal nanostructures can serve
as a new internal standard to allow both spatial and temporal
calibration of SERS signals for quantitative analysis of analyte
molecules.27

Herein, we propose that plasmonically calibrated label-free
SERS can achieve an improved multivariate analysis of living
biological systems by increasing the correlations of Raman
fingerprint features with molecular concentration profiles of
complex biochemical matrices at hotspots. For the first time,
we experimentally manifest the effectiveness of the ERS-based
SERS calibration methodology in enhancing the supervised
learning classification of living cell SERS spectra for cancer
subtyping and drug efficacy testing. By exploiting biocompat-
ible Au-based plasmonic nanolaminate substrates with dense
uniform hotspot arrays, we can successfully achieve the cell
culture on the SERS substrates to conduct SERS measure-
ments of living cells under near-infrared (NIR) laser excitation

at 785 nm. To assess the effects of ERS-based SERS calibration
on the living cell multivariate analysis performance, we use two
supervised learning approaches (e.g., PCA-LDA and PLS-DA)
for the classification of SERS spectra from four biologically
well-studied living breast cell lines, including a nonmalignant
breast normal cell line (MCF-10A), a moderately malignant
breast cancer cell line (MCF-7), and two highly malignant
breast cancer cell lines (MDA-MB-231 and HCC-1806). From
the side-by-side comparison of statistical analysis results from
ERS-calibrated and noncalibrated SERS datasets, we show that
the ERS calibration method can improve the statistical
classification accuracy in cancer subtyping using extracellular
SERS features from different living cells. We further investigate
the effects of the ERS-based SERS calibration on the
multivariate analysis of living cancer cells in response to an
anticancer drug, paclitaxel (PTX), at different dosages. To
assess the ERS calibration’s contribution to the statistical
classification of living cancer cells’ drug responses, we employ
two different breast cancer cell lines (MDA-MB-231 and
HCC-1806) that have different half-maximal inhibitory
concentration (IC50) values to the same anticancer drug
(PTX). Compared to noncalibrated SERS datasets, ERS-
calibrated SERS datasets can increase classification accuracy for
resolving different cancer cells’ dosage-dependent responses,
highly desirable for label-free living cell studies in drug efficacy
testing. Therefore, we envision that the plasmonic ERS-based
calibration method can significantly boost the multivariate
analysis performance in label-free SERS measurements of living
biological systems and other complex biochemical matrices.

■ EXPERIMENTAL SECTION

Cell Culture and Paclitaxel Treatment. MDA-MB-231
(American Type Culture Collection, ATCC) was grown in
F12:DMEM (Dulbecco’s Modified Eagle Medium, Lonza,
Basel, Switzerland) with 4 mM glutamine, 10% fetal bovine
serum (FBS), and penicillin−streptomycin (100 units per mL).
HCC-1806 (ATCC) was grown in an ATCC-formulated
RPMI-1640 medium (Roswell Park Memorial Institute 1640
medium, enriched with L-glutamine, 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), and sodium pyruvate,
ATCC 30-2001) with 10% FBS and 1% PenStrep (100 units/
mL penicillium and 100 μg/mL streptomycin). MCF-7 cells
(ATCC) were grown in EMEM with 10% FBS and 2× L-
glutamine. MCF-10A cells (Lombardi Comprehensive Cancer
Center, Georgetown University in Washington, D.C.) were
grown in F12:DMEM with penicillin−streptomycin (100
units/mL), 20 ng/mL epidermal growth factor (EGF), 2.5
mM L-glutamine, 10 μg/mL insulin, 0.1 μg/mL cholera toxin,
0.5 μg/mL hydrocortisone, and 5% horse serum. All cells were
grown in T-25 cm2 culture flasks (Corning, NY) at 37 °C in a
5% CO2 in air atmosphere. Cells were then trypsinized and
seeded on nanolaminated SERS substrates. Paclitaxel (Sigma
Aldrich) was diluted in dimethyl-sulfoxide (DMSO, ATCC)
with a concentration of 1.5, 5, and 15 μM for three different
drug treatment concentrations. The solutions were mixed with
1 mL of the culture medium for the final drug concentrations
of 1.5, 5, and 15 nM. The culture medium for the control
group contains the same DMSO concentration as the drug
treatment medium. The control group was prepared by adding
1 μL of DMSO in 1 mL of the culture medium. Once the cells
were grown to ≈ 70% confluence, the medium was replaced by
the new medium with paclitaxel.
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Raman Measurement. We used a confocal Raman
microscope (Alpha 300 RSA+, WITec, Germany) for SERS
measurements under laser excitation at 785 nm (Toptica
Photonics, Germany) via a 20× objective (NA = 0.4). For 2D
Raman mapping of living cells, a 20× water immersion
objective (NA = 0.5) was used with 5 mW laser power and 20
ms integration time per pixel over a 100 μm × 100 μm area.
Before the measurement, the instrumental calibration was
verified by the silicon peak at 520 cm−1. All measurements
were conducted in the backscattering geometric configuration
at room temperature. A long-pass filter blocks elastically
scattered radiation at the wavelength corresponding to the
laser line (Rayleigh scattering). Simultaneously, the rest of the
collected light was guided through a multimode fiber (100 μm
core diameter), acting as the pinhole for a confocal
microscope, to a spectrometer (UHTS 300, WITec,
Germany). The backscatter photons were dispersed with a
300 groove mm−1 (750 nm blaze grating) and detected by a
CCD camera (DU-401A BR-DD-352, Andor Technology,
UK), which was thermoelectrically cooled and maintained at
−60 °C.
Data Processing and Multivariate Analysis. Cosmic ray

removal was conducted by instrument-embedded software
(Project v4.1, WITec). Smoothing interpolation and data
truncation were carried out with the R package hyperSpec.
PCA and peak picking were done with the R packages
ChemoSpec and MALDIquant, respectively. LDA and PLS-DA
were performed using the R packages of MASS and mixOmics,
respectively.

■ RESULTS AND DISCUSSION

Unlike molecular Raman scattering (MRS) signals from the
molecule’s vibrational modes to exhibit as discrete narrow
emission peaks (Figure 1A-right), the ERS signals originate
from the inelastic light scattering of electrons in sp-bands of
metal nanostructures (Figure 1A-left) and thus present as a
source of continuum emission background in SERS measure-

ments. Recent studies report that the ERS signals can be the
dominant contribution to the SERS background of gold-based
plasmonic nanostructures under NIR laser excitation.32−34

Notably, the use of Au plasmonic nanosensors and the NIR
excitation is highly desirable for SERS measurements of living
biological systems. (1) Au is a biocompatible material. (2) NIR
excitation can result in low autofluorescence, minimum
phototoxicity, and deeper penetration depth in characterizing
living biological samples. We have recently reported that both
MRS and ERS processes follow the same |Eloc/Eo|

4 enhance-
ments at plasmonic hotspots, where Eloc and Eo are the
magnitudes of local and incident electric fields, respectively,
and ERS signals can act as an internal standard to calibrate
SERS signals, resulting in reduced spatial and temporal
variations.27 Plasmon-enhanced ERS intensity exponentially
increases with the reduced Stokes-shifted frequency (Δωe)
toward the zero value because of its linear dependence on the

electron−hole pair density, ωΔ = − −ω
−

ℏΔ
−
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in metal nanostructures,32−34 where ℏ is the Planck constant,
kB is the Boltzmann constant, and T is the temperature.
Therefore, in SERS measurements, by filtering Rayleigh
scattering with a long-pass filter, a prominent ERS pseudo-
peak (Figure 1B) can be generated as the SERS calibrator at
the low-wavenumber range (<100 cm−1). As derived in our
previous work,27 the ratio between MRS and ERS signals from
the same plasmonic hotspots can be approximated as
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where εM and εI are the complex permittivity of the metal and
the insulator, respectively, at the incident laser frequency ωo,
σERS and σMRS are the effective cross sections for the ERS and
MRS processes, respectively, Δωm is the Stokes-shifted
frequency for the MRS process, r is the effective orientation
coefficient of analyte molecules, and N is the molecular

Figure 1. ERS signals in SERS measurements and ERS calibration for label-free living cell SERS biostatistical analysis. (A) Energy diagram
illustration of the ERS process (left) and the MRS process (right). (B) Representative SERS spectrum using adenine molecules, showing the ERS
pseudo-peak and MRS signals. (C) Schematic illustration of nanolaminated SERS substrates (top) and corresponding cross-sectional scanning
electron microscope (SEM) image achieved by FIB milling. (D) Schematic illustration of the ERS and MRS processes at plasmonic hotspots in a
unit cell of nanolaminated SERS substrates. (E) Flow diagram of the major steps for ERS calibration-enabled improved multivariate analysis of
living cell SERS.
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concentration. Apart from r and N, the other terms can be
expressed as a material-based constant M. Therefore, the ratio
between MRS and ERS signals can be further approximated as
IMRS/IERS = M·r·N. Compared to noncalibrated SERS signals
(IMRS), the ERS-calibrated SERS signals (IMRS/IERS) are less
affected by local field variations at hotspots and can more
accurately reflect the molecular concentrations in complex
biochemical matrices. Notably, the plasmonically enhanced
ERS signals can serve as the internal SERS calibration standard
for low-uniformity SERS substrates consisting of plasmonic
nanoparticle aggregations and high-uniformity nanolaminate
SERS substrates.27

Figure 1E shows a flow diagram to achieve ERS calibration
for multivariate analysis of label-free living cell SERS. For the
first step of “Preparation of SERS substrates,” as shown in
Figure 1C,D, we use nanolaminated SERS substrates consisting
of vertically stacked hotspots with large and RI-insensitive
SERS enhancement factors (EFs) (>107).20,35 This RI-
insensitive SERS property is due to the multiresonant optical
property of vertically stacked metal−insulator−metal (MIM)
nanostructures. For example, the RI of intracellular and
extracellular components in cellular systems can vary from
1.30 to 1.60.36,37 The integration of nanolaminated MIM
nanostructures on vertical nanopillar arrays can promote the
cellular engulfing activities and form an intimate nano-bio
interface between cell membranes and plasmonic nano-
antennas,38−40 desirable for SERS profiling of biomolecules
on cell membranes. The molding technique of soft lithography
provides good fabrication scalability allowing mass production
of large-area (≈16 cm2) uniform hotspot arrays with cost-
effectiveness, beneficial to biological applications. For the
second step of “Cell culture and drug treatment,” we directly
cultured different breast normal and cancer cells on the
nanolaminated SERS substrates. To conduct the drug efficacy
study, we delivered an anticancer drug to living cancer cells
with specific dosages, including IC50, followed by the third step
of “Label-free SERS measurements.” Finally, we demonstrate
multivariate analysis for living cell subtype classification and
drug efficacy assessment with systematic comparisons between
before and after ERS calibration.
To demonstrate ERS calibration’s effectiveness to allow

quantitative SERS analysis of biomolecules, we performed
label-free SERS measurements of adenine molecules in
phosphate-buffered-saline (PBS) solution with different
concentrations from 1 to 100 μM (Figure 2). The samples
were immersed in the solutions, and we acquired 2D Raman
mapping results over a 100 μm × 100 μm area containing 20
pixels × 20 pixels. Figure 2A shows a Raman spectrum of 60
μM adenine without ERS calibration and the corresponding
2D Raman image (inset) using a peak at 745 cm−1 (ring-
breathing mode). We can observe a large standard deviation
(SD) (gray region) and, accordingly, a large coefficient of
variation (CV) value of 26%. On the other hand, in Figure 2B,
the ERS-calibrated SERS signals show a much smaller SD with
12% CV, and the 2D Raman image shows a more uniform
intensity distribution over the large area with reduced spatial
variations. Original spectra of before and after ERS calibration
are available in Figure S1. To evaluate ERS calibration
improvement for quantitative analysis, we plotted the working
curve from 1 to 100 μM using the peak at 745 cm−1 (Figure
2C,D). By ERS calibration, we observe that the calibrated
SERS signals more smoothly fit the Langmuir adsorption curve
with reduced CV values for the equilibrium constant, KT, from

37.6% (4.1 × 105 ± 1.54 × 105 L/mol) to 11.1% (2.7 × 105 ±
0.30 × 105 L/mol). The SDs of all concentrations were
significantly reduced with shorter error bars, and R2 values
increased from 0.85 to 0.98. We calculated the surface
coverage (θ) of adenine molecules (Figure S2) with the

equation expressed as θ = ×
+ ×
K C

K C(1 )
T

T
, where C is the adenine

concentration. After ERS calibration, the scatters show a better
linear fitting with an improved convergence and increased R2

values from 0.972 to 0.997.
To examine the effectiveness of ERS calibration on label-free

SERS analysis of living cells, we conducted 2D Raman
mapping measurements of breast normal and cancer cells
cultured on the nanolaminated SERS substrates and compared
the SERS profiles before and after ERS calibration (Figure 3).
Here, we selected four different human breast normal and
cancer cell lines with different degrees of malignancy covering
a broad range of breast tumor types, including nonmalignant
breast normal cells (MCF-10A), moderately malignant breast
cancer cells (MCF-7), and highly malignant breast cancer cells
(MDA-MB-231 and HCC-1806). Both MDA-MB-231 and
HCC-1806 are triple-negative breast cancer (TNBC) cells,
which lack targetable receptors of progesterone (PR), estrogen
(ER), and human epidermal growth factor receptor 2 (HER2).
TNBC cells, therefore, have been reported to have a
significantly higher risk of recurrence and the worst survival
rates among subtypes of breast tumors.41

Figure 3A shows the scheme of the experimental setup. A
confocal Raman microscope under backscattering configura-
tion equipped with a 20× water immersion objective (NA =
0.5) and 785 nm laser excitation was used for mapping label-
free SERS spectra of living cells. To minimize time-dependent
effects on the living cell SERS spectra due to the dynamic

Figure 2. ERS calibration for quantitative SERS analysis of solution-
based adenine molecules. (A,B) Averaged SERS spectrum of 60 μM
adenine solution with SD (gray shaded regions) (A) before and (B)
after ERS calibration. The MRS region between 700 and 800 cm−1 is
multiplied by three for clarity. (inset) Corresponding 2D Raman
images over a 100 μm × 100 μm area. (C,D) Working curves of
adenine molecules in PBS solution with different concentrations from
1 to 100 μM using the adenine peak at 745 cm−1 (C) before and (D)
after ERS calibration.
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metabolic processes and stress responses to the nutrient-free
environments, we restricted SERS mapping measurements
within 2 h without changing culture media with other
solutions.3 As shown in Figure 3B,C of the representative
photograph and SEM image, nanolaminated SERS substrates
have good nanoscale uniformity. A large-area top-view SEM
image is shown in Figure S3. Figure 3D shows top-view and
cross-sectional SEM images of MDA-MB-231 cultured on the
nanolaminated SERS substrates. The membrane surface
feature of the cultured MDA-MB-231 agrees with a previously
reported study that such cancer cells reveal brush structures,
consisting of microvilli and cilia with different lengths (Figure
3D-i).42 Furthermore, previous reports show that vertical
nanopillar structures can induce spontaneous cell engulf-
ment,38−40 and we expect that a tight interface between the cell
membrane and nanolaminated SERS substrates can improve
SERS detection sensitivity. The focused ion beam (FIB)-milled
SEM image in Figure 3D-ii shows that a clear nano-bio
interface was formed between them, allowing direct label-free
SERS measurements of cell membrane components for living
cells. However, as shown in Figure 3D-iii, some nanoantennas
do not meet the cell membrane but may still detect
extracellular biomolecules in their local microenvironments,
such as secreted metabolites and exosomes.43

Figure 3E−H shows field images, 2D images of ERS-
calibrated SERS signals, and averaged Raman spectra after ERS
calibration of four different living breast cells. The 2D Raman
images were acquired from a 100 μm × 100 μm area
containing 10,000 pixels, which can accommodate a group of
cells. The protein-relevant range (from 1200 to 1800 cm−1)
was used for 2D Raman maps. Enabled by high SERS EFs
(>107) of the nanolaminated SERS substrates, we used a short
integration time (20 ms) to collect Raman spectra with proper
signal-to-noise ratios. In this way, each measurement for a
Raman 2D mapping image over the large area takes only 3−5
min. Compared to conventional Raman imaging, rapid SERS
spectroscopic imaging is incredibly valuable for bioanalysis of
living cells by minimizing temporal deviations of molecular
fingerprint information between different pixels in 2D Raman
images due to dynamic cellular processes. For example, we
observed that cancer cells sometimes underwent quick cell
mitosis within 30−60 min (not shown).
By comparing 2D Raman images among different cells (the

top row in Figure 3E−H), we can notice that the breast normal
MCF-10A cells exhibit a more uniform signal distribution with
brighter pixels than the three other types of cancer cells, which
reflects the inherent cellular property of MCF-10A that forms
an epithelial-like compact morphology.44 Remarkably, despite
the excellent hotspot uniformity of the nanolaminated SERS

Figure 3. 2D label-free SERS measurements of living breast normal and cancer cells cultured on the nanolaminated SERS substrates. (A) Schematic
illustration of the experimental setup for label-free living cell SERS measurements. (B) Photograph and (C) SEM image of the nanolaminated SERS
substrates. (D) (i) Top-view and (ii,iii) cross-sectional view of SEM images of MDA-MB-231 cultured on the nanolaminated SERS substrates. (E−
H) Bright-field images (top left), 2D Raman images (top right), and averaged SERS spectra of living cells after ERS calibration (bottom) for (E)
MCF-10A, (F) MCF-7, (G) MDA-MB-231, and (H) HCC-1806. 2D Raman images were plotted using the integrated Raman signals of the
protein-related region (1200−1800 cm−1). The shaded regions in the averaged spectra are the 5th and 95th quartiles.
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substrate, there is no direct spatial correlation of cell
morphologies in bright-field images with 2D Raman images
for different living cells, which reflects the heterogeneous,
dynamic, and stochastic adsorption processes of different
biomolecules at plasmonic hotspots distributed over the SERS
substrates.3,15 The middle and bottom rows in Figure 3E−H,
respectively, show the average SERS spectra after ERS
calibration with 5th and 95th quartiles (shaded regions)
from four living breast cells. The 2D Raman images and SERS
spectra before ERS calibration are shown in Figure S4. These
spectral results highlight the following critical points. First, the
SERS spectra measured from all living cells show significant
pixel-to-pixel variations due to the spatial heterogeneity of
SERS signals from cellular biomolecules at plasmonic
hotspots.3,15,45 Second, all living cells exhibit rich fingerprint
profiles over a wide wavenumber range between 400 and 1700
cm−1. Third, although we can observe subtle differences
between spectral profiles before (Figure S4) and after ERS
calibration, it is difficult to evaluate whether ERS calibration
improved the quality of living cell SERS spectra. Therefore,
these observations justify using statistical approaches for
analyzing the subtle differences of complex label-free SERS
spectroscopic imaging data from different types of living cells.
Significantly, the average SERS spectra (Figure 3E−H) can

reveal that the measured SERS signals originate from viable
living cells. First, the absence of broad carbon-based D (1350
cm−1) and G (1580 cm−1) bands reflects that the laser
excitation conditions did not induce the photothermal
graphitization of biomaterials, which can be deposited on
hotspots and can mask weak SERS signals. Second, the absence
of the phosphatidylserine(s) Raman signals (524, 733, and 787
cm−1) from SERS hotspots in extracellular regions suggests
that the measured cells are living since phosphatidylserine(s) is
no longer restricted to face the inner leaflet of the plasma
membrane when cells undergo apoptosis.46 Third, the absence
of Raman “death bands” of benzene ring stretching (1000
cm−1) and N−H out-of-plane bending (1585 cm−1) modes
also reflects a healthy state of the measured cells.47 Finally, the
DNA backbone (1125 cm−1) peak appearance along with lack
of adenine ring-breathing mode (735 cm−1) indicates a
nondenaturalized configuration of DNA from living cells.48

As shown in Figure 3E−H, all cancer cells reveal higher
SERS intensities with more peaks in the lipid-relevant ranges
(780 to 890 cm−1 and 1400 to 1550 cm−1),49 reflecting
increased lipid-related components by the amplified synthesis
of fatty acid and phospholipids.50,51 Similarly, all cancer cells

show weak or almost no collagen peaks (815 and 852 cm−1),
indicating a reduced collagen feature in cancer cells.52 In
addition, TNBC cells exhibit weak proline (855 cm−1) and
phospholipid (1454 cm−1) intensities.53 A common thing for
the three different breast cancer cells is that they all show
strong phenylalanine (621, 645, and 1170 cm−1), tryptophan
(879, 1208, and 1348 cm−1), and tyrosine (825, 1164, and
1178 cm−1) peaks compared to nonmalignant cells, suggesting
the increased aromatic amino acid-rich proteins on their
surfaces.51,53 Remarkably, we can observe large variations of
amide III bands (1200 to 1350 cm−1)54 from the MCF-7
cancer cells with moderate malignancy as well as from the
MDA-MB-231 and HCC-1806 TNBC cells with high
malignancy. The observation of large amide III band variations
can be associated with the disordered proteins with the beta-
sheet conformation, indicating a more considerable degree of
protein structural instability, i.e., less rigid and stable,
consistent with the higher deformability of cancer cells.55

Despite the significance, the direct SERS bioanalysis of living
cells by the spectroscopic fingerprint features has significant
limitations, including the masking of crucial information from
low-concentration biomolecules and spectral interference
between different biomolecule ensembles.15,45 Therefore,
multivariate statistical methods can play a crucial role in
analyzing inhomogeneous Raman spectroscopic data from
label-free biological samples.3 This study used PLS-DA56 as a
supervised classification machine learning method to maximize
interclass variance among different types of cells. To
investigate the effects of ERS calibration on the statistical
SERS bioanalysis performance for living cells, we performed
PLS-DA for the SERS dataset before and after ERS calibration
(Figure 4). Before ERS calibration, PLS-DA scatter plots in
Figure 4A show two groups of overlapped scatters for (1)
breast normal MCF-10A cells and moderately malignant MCF-
7 cancer cells and for (2) highly malignant MDA-MB-231 and
HCC-1806 TNBC cells. After ERS calibration (Figure 4B), the
scatters of MCF-10A cells can be separated from those of
MCF-7 cells, while the scatters of MDA-MB-231 and HCC-
1806 TNBC cells still overlap due to their similar surface
protein expressions.41,57 Therefore, the ERS calibration process
can improve the statistical SERS bioanalysis to classify between
different cell lines, suggesting that achieving a more accurate
scaling of Raman fingerprint signature intensities in the
measured SERS spectra from different pixels can play a
positive role in the statistical analysis of biological samples.

Figure 4. Improved SERS multivariate analysis by ERS calibration for subtype classification of living breast normal and cancer cells. (A,B) PLS-DA
scatter plots of four different living breast normal and cancer cells (A) before and (B) after ERS calibration. (C,D) Histograms of the LOOCV
confusion matrix (C) before and (D) after ERS calibration.
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After ERS calibration, we can separate human breast cell
lines into three different groups based on the degree of
malignancy: (1) nonmalignant (MCF-10A), (2) moderately
malignant (MCF-7), and (3) highly malignant (MDA-MB-231
and HCC-1806 TNBC cells). Subtype classification among
different breast cancer cells by the degree of malignancy can be
achieved due to significant molecular differences in trans-
membrane proteins between luminal A subtype (MCF-7) and
TNBC cells,58 and in vimentin expression, one of the
cytoskeletal components in charge of retaining cell integrity.59

MDA-MB-231 express vimentin, which makes it a more
mesenchymal type than HCC-1806.57 Vimentin is typically
attached to the nucleus, endoplasmic reticulum, and
mitochondria.60 To test the generality of ERS calibration for
improving statistical bioanalysis, we have also used a
combination of PCA and LDA to process the same SERS
dataset with and without ERS calibration, showing very similar
results as the PLS-DA method (Figure S5).
PLS-DA prediction abilities with and without ERS

calibration can be assessed in an unbiased manner using the
leave-one-out cross-validation (LOOCV) approach, and Figure
4C,D shows the confusion matrix results in histograms. Table
S1 shows the confusion matrices of the raw numbers of
spectra. Here, we use LOOCV to assume that each spectrum
independently represents a specific cell type among four
different cell lines. With ERS calibration, the PLS-DA
prediction accuracy increases from 71 to 98% for MCF-7
and increases from 83 to 91% for MCF-10A. In contrast, after
ERS calibration, MDA-MB-231 shows a prediction accuracy

slightly improved from 50 to 60%, and HCC-1806 maintains a
prediction accuracy around 65%, indicating that the two
TNBC cell lines possess similar molecular Raman fingerprint
profiles of extracellular and membrane proteins in SERS
measurements.
Given the ERS calibration-enabled improvement in

statistical classification between normal breast cells and
different subtypes of breast cancer cells, we further investigated
ERS calibration effects on statistical bioanalysis performance in
drug testing for living cancer cells. Based on the previous
studies,61−63 we chose to use PTX as a potent anticancer drug,
which can stabilize microtubules and prevent cancer cell
division, to treat the two highly malignant TNBC cells (i.e.,
MDA-MB-231 and HCC-1806). As reported in a previous
study,64 the IC50 value for PTX to MDA-MB-231 cells is 12−
15 nM, while the IC50 value for PTX to HCC-1806 cells is
0.8−2.0 nM. It is crucial to determine the IC50 values for a
specific anticancer drug to a specific cancer cell, helping refine
a proper chemotherapy procedure in cancer treatment. With
preknowledge of the different IC50 values for PTX to MDA-
MB-231 and HCC-1806 cells, we can choose a series of PTX
dosages to examine dosage-dependent drug effects on both
cells in statistical SERS bioanalysis. We conducted 2D SERS
mapping measurements of living MDA-MB-231 and HCC-
1806 cells under different PTX dosages and compared SERS
statistical bioanalysis performance with and without ERS
calibration. Specifically, the cells treated with 0 nM PTX in
dimethyl-sulfoxide (DMSO) serve as a control. To confirm
that acquired SERS signals originate from living cells rather

Figure 5. Improved SERS multivariate analysis by ERS calibration for the dosage-dependent drug efficacy study for TNBC cells. (A,B) PLS-DA
scatter plots of MDA-MB-231 treated by different PTX dosages (A) before and (B) after ERS calibration. (C,D) Histograms of the LOOCV
confusion matrix of the MDA-MB-231 dataset (C) before and (D) after ERS calibration. (E,F) PLS-DA scatter plots of HCC-1806 treated by
different PTX dosages (E) before and (F) after ERS calibration. (G,H) Histograms of the LOOCV confusion matrix of the HCC-1806 dataset (C)
before and (D) after ERS calibration. IC50 of PTX for each TNBC is labeled with an orange color.
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than chemical components of culture media or drugs, we
conducted SERS measurements of bare culture media with and
without PTX. As expected, due to the relatively low
concentration of chemicals, we did not observe any distinct
Raman peaks (Figure S6).
Figure 5A,B shows PLS-DA scatter plots measured from

living MDA-MB-231 cells treated with different PTX dosages
before and after ERS calibration, respectively. Before ERS
calibration (Figure 5A), the scatters of the low-dosage group
(1.5 nM) considerably overlap with those of the control group
(0 nM), while the scatters of the high-dosage group (IC50, 15
nM) are separated from the control group. The scatters of the
middle-dosage group (5 nM) are distributed between the low-
and the high-dosage groups with apparent overlaps. After ERS
calibration (Figure 5B), the separations among scatters of the
low (1.5 nM)-, the middle (5 nM)-, and the high (15 nM)-
dosage groups are more pronounced, indicating improved
molecular fingerprint profiling and bioanalysis of living cancer
cell status upon drug perturbations with different dosages. On
the other side, the scatters of the control (0 nM) group and the
low-dosage (1.5 nM) group still have a significant overlap after
ERS calibration. This observation suggests that the PTX
treatment with one order of magnitude lower dosage (1.5 nM)
than IC50 (15 nM) is not enough to elicit significant changes of
SERS-measured molecular profiles to statistically distinguish
the drug effects on MDA-MB-231 cells compared to the
control group (0 nM).
By comparing LOOCV confusion matrix histograms for

PLS-DA results before (Figure 5C) and after (Figure 5D) ERS
calibration, we can further quantify the prediction accuracy
improvement in statistical SERS bioanalysis. After ERS
calibration, the prediction accuracy rate for the middle-dosage
(5 nM) group increases from 54 to 72%, while the prediction
accuracy rate for the high-dosage IC50 group (15 nM) remains
around 86%. For the nearly indistinguishable control (0 nM)
and low-dosage (1.5 nM) groups, the prediction inaccuracy
rates assigned to the 5 and 15 nM groups are reduced
significantly from 20 to 7% and from 29 to 13%, respectively.
These observations imply that there may be a threshold PTX
drug dosage value below 15 nM (IC50) and above 5 and 15 nM
to induce sufficient changes in SERS-measured molecular
profiles to distinguish the drug effects on MDA-MB-231 cells.
Future research can exploit ERS-calibrated SERS bioanalysis to
investigate dynamic responses of living cells upon drug
perturbations with different dosage levels.
Figure 5E,F shows PLS-DA scatter plots measured from

living HCC-1806 cells with different PTX dosages before and
after ERS calibration, respectively. Before ERS calibration, the
scatters of the low-dosage group (IC50, 1.5 nM) exhibit
substantial overlap with the control group (0 nM), while the
scatters of the middle-dosage (5 nM) and the high-dosage (15
nM) groups overlap each other with separation from the
control group (0 nM) and the low-dosage IC50 (1.5 nM)
group. Remarkably, after ERS calibration, the scatters of the
control group (0 nM) can completely separate from the three
PTX-treated groups (1.5, 5, and 15 nM). Among the three
PTX-treated groups, after ERS calibration, we can observe a
gradual convergence of the scatter distributions evolving from
the low-dosage group (1.5 nM) to the higher-dosage groups (5
and 15 nM) with accompanying reduced scatter distribution
areas.
As shown in Figure 5G,H, after ERS calibration, the control

group’s (0 nM) prediction accuracy rate was significantly

improved from 66 to 96% with reduced overlaps of its scatters
with the low-dosage IC50 (1.5 nM) group. In comparison, the
prediction accuracy rate for the low-dosage IC50 (1.5 nM)
group decreases from 85 to 69% due to increased overlaps of
its scatters with the middle-dosage (5 nM) and the high-
dosage (15 nM) groups. The prediction accuracy rates for the
middle-dosage (5 nM) and the high-dosage (15 nM) groups
do not change much after ERS calibration. In Figure 5F, the
observed converging of the scatter distributions toward the
high-dosage group (15 nM) is due to the drug saturation
effects because the cancer cells treated with the drug dosage
above IC50 will have similar biological behaviors with stopped
mitosis by binding PTX molecules with most of the
microtubules.61−63 In the PLS-DA scatter plot after ERS
calibration (Figure 5F), the scatters of the low-dosage IC50
(1.5 nM) group have a more extensive distribution area than
the higher-dosage groups (5 and 15 nM). These observations
reveal that compared to the cancer cells treated by higher
dosage experiencing drug saturation effects, the population of
IC50 cancer cells can have a broader range of cellular
biochemical states associated with the stochastic drug
perturbation of cell cycle (mitotic-arrest) and apoptosis
processes.62,63 Therefore, with ERS calibration, SERS molec-
ular profiles of drug-treated living cells can allow a more
accurate biostatistical analysis to distinguish dosage-dependent
drug responses of living cancer cells. Compared to conven-
tional immune-staining assays widely used for in vitro drug
efficacy assessment, ERS-calibrated SERS bioanalysis can allow
noninvasive, label-free, and real-time monitoring of living cells
to investigate dynamic cellular behaviors in response to
perturbations from drugs or other physical/chemical stimuli.

■ CONCLUSIONS

In summary, we show that ERS calibration can improve the
quantitative analysis of adenine molecules in solutions,
resulting in a smoother fitting with the Langmuir adsorption
curve. In particular, we demonstrate that applying ERS
calibration to label-free living cell SERS measurements can
improve the classification accuracy of supervised learning
approaches in subtyping breast normal and cancer cells with
different degrees of malignancy. Furthermore, ERS calibration
can enhance the supervised learning classification for dosage-
dependent anticancer drug responses of living TNBC cells. By
avoiding using Raman tags, the ERS calibration approach
demonstrated in this work has several crucial advantages, such
as no adsorption competition and no spectral interference with
target analytes and excellent photochemical and photothermal
stability. Therefore, the plasmonic ERS-based calibration
method can enhance the multivariate analysis of label-free
SERS datasets from living biological systems and open new
opportunities in biology and medicine, including spatiotem-
poral monitoring and analysis of biological processes in living
cells and cellular networks, rapid real-time drug reaction
assessment of living normal and cancer cells for personalized
medicine, and long-term in vivo monitoring of disease states
with implantable SERS devices.
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